Strongly correlated superconductivity in cuprates and layered organics: results and some algorithmic details

A.-M. Tremblay

Charles-David Hébert, Giovanni Sordi, Patrick Sémon, Kristjan Haule, David Sénéchal, Alexandre Day, Vincent Bouliane

Bâton Rouge, 14 February 2015

BCS Superconductivity

— -p'

#1 Cooper pair, #2 Phase coherence

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*}$$

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \left(\langle \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \rangle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} + \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \langle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} \rangle \right)$$

$$|\mathrm{BCS}(\theta)\rangle = \dots + e^{iN\theta}|N\rangle + e^{i(N+2)\theta}|N+2\rangle + \dots$$

Breakdown of band theory Half-filled band is metallic?

Half-filled band: Not always a metal

NiO, Boer and Verway

Peierls, 1937

Mott, 1949 SHERBROOKE

Two materials, two routes to breakdown of band theory and of BCS superconductivity

Cuprates

SCIENTIFIC AMERICAN

JUNE 1988 \$3.50

How nonsense is deleted from genetic messages. R_x for economic growth: aggressive use of new technology. Can particle physics test cosmology?

High-Temperature Superconductor belongs to a family of materials that exhibit exotic electronic properties. Y Ba Cas O7. 8 92-37

Hubbard model

1931-1980

$$H = -\sum_{\langle ij \rangle \sigma} t_{i,j} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

$$f = 1$$

Effective model, Heisenberg: $J = 4t^2 / U$

High-temperature superconductors

What is under the dome? Mott Physics away from n = 1

- Competing order
 - Current loops: Varma, PRB 81, 064515 (2010)
 - Stripes or nematic: Kivelson et al. RMP 75 1201(2003); J.C.Davis
 - d-density wave : Chakravarty, Nayak, Phys. Rev. B 63, 094503 (2001); Affleck et al. flux phase
 - SDW: Sachdev PRB 80, 155129 (2009) ...
- Or Mott Physics?
 - RVB: P.A. Lee Rep. Prog.
 Phys. 71, 012501 (2008)

Hubbard on anisotropic triangular lattice

H. Kino + H. Fukuyama, J. Phys. Soc. Jpn **65** 2158 (1996), R.H. McKenzie, Comments Condens Mat Phys. **18**, 309 (1998)

Phase diagram for organics

S. Lefebvre et al. PRL 85, 5420 (2000), P. Limelette, et al. PRL 91 (2003)

Perspective

Methods

Mott transition and Dynamical Mean-Field Theory. The beginnings in d = infinity

- Compute scattering rate (self-energy) of impurity problem.
- Use that self-energy (ω dependent) for lattice.
- Project lattice on single-site and adjust
 bath so that single-site
 DOS obtained both
 ways be equal.

W. Metzner and D. Vollhardt, PRL (1989)A. Georges and G. Kotliar, PRB (1992)M. Jarrell PRB (1992)

DMFT, (d = 3)

2d Hubbard: Quantum cluster method

DMFT as a stationnary point

+ and -

- Long range order:
 - Allow symmetry breaking in the bath (mean-field)
- Included:
 - Short-range dynamical and spatial correlations
- Missing:
 - Long wavelength p-h and p-p fluctuations

C-DMFT

$$Z = \int \mathcal{D}[\psi^{\dagger}, \psi] \,\mathrm{e}^{-S_{c} - \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \sum_{\mathbf{K}} \psi_{\mathbf{K}}^{\dagger}(\tau) \Delta(\tau, \tau') \psi_{\mathbf{K}}(\tau')}_{\mathbf{K}}$$

EFFECTIVE LOCAL IMPURITY PROBLEM

SELF-CONSISTENCY CONDITION

Here: continuous time QMC

Mean-field is not a trivial

problem! Many impurity

solvers.

P. Werner, PRL 2006 P. Werner, PRB 2007 K. Haule, PRB 2007

$$\Delta(i\omega_n) = i\omega_n + \mu - \Sigma_c(i\omega_n) \\ - \left[\sum_{\tilde{k}} \frac{1}{i\omega_n + \mu - t_c(\tilde{k}) - \Sigma_c(i\omega_n)}\right]^{-1}$$

Mott transition

Weak vs Strong correlations

Local moment and Mott transition

Phase separation on electron-doped side

Crossovers and transition

A. Liebsch, N.H. Tong, PRB 80, 165126 (2009)

First order transition at finite doping

t' = 0

 $n(\mu)$ for several temperatures: T/t = 1/10, 1/25, 1/50

Sordi et al. PRL 2010, PRB 2011

A finite-doping first order transition, linked to Mott transition up to optimal doping

Doping dependence of critical point as a function of U

Normal state phase diagram

Giovanni Sordi

Patrick Sémon

Kristjan Haule

The Widom line

G. Sordi, et al. Scientific Reports 2, 547 (2012)

Link to Mott transition up to optimal doping

Doping dependence of critical point as a function of U

Pseudogap T^* along the Widom line

What is the Widom line?

McMillan and Stanley, Nat Phys 2010

- it is the continuation of the coexistence line in the supercritical region
- ▶ line where the maxima of different response functions touch each other asymptotically as $T \rightarrow T_p$
- liquid-gas transition in water: max in isobaric heat capacity C_p, isothermal compressibility, isobaric heat expansion, etc
- DYNAMIC crossover arises from crossing the Widom line! water: Xu et al, PNAS 2005, Simeoni et al Nat Phys 2010

Rapid change also in dynamical quantities

Compare a few results for cuprates

Spin susceptibility

Spin susceptibility

What is the minimal model?

H. Alloul arXiv:1302.3473 C.R. Académie des Sciences, (2014)

Fig 1 Spin contribution K_s to the ⁸⁹Y NMR Knight shift [11] for YBCO_{6.6} permit to define the PG onset T^* . Here K_s is reduced by a factor two at $T \sim T^*/2$. The sharp drop of the SC fluctuation conductivity (SCF) is illustrated (left scale) [23]. We report as well the range over which a Kerr signal is detected [28], and that for which a CDW is evidenced in high fields from NMR quadrupole effects [33] and ultrasound velocity data [30]. (See text).

C-axis resistivity

Two crossover lines

Giovanni Sordi

Summary: normal state

- Mott physics extends way beyond half-filling
- Pseudogap is a phase
- Pseudogap *T** controlled by a Widom line and its precursor
- High compressibility (stripes?)

Giovanni Sordi

Patrick Sémon

Kristjan Haule

Finite *T* phase diagram Superconductivity

Sordi et al. PRL 108, 216401 (2012)

Phase diagram for U = 6.2 t

Giovanni Sordi

Actual T_c in underdoped

• Quantum and classical phase fluctuations

- V. J. Emery and S. A. Kivelson, Phys. Rev. Lett. 74, 3253 (1995).
- V. J. Emery and S. A. Kivelson, Nature **374**, 474 (1995).
- D. Podolsky, S. Raghu, and A. Vishwanath, Phys. Rev. Lett. 99, 117004 (2007).
- Z. Tesanovic, Nat Phys **4**, 408 (2008).

• Magnitude fluctuations

– I. Ussishkin, S. L. Sondhi, and D. A. Huse, Phys. Rev. Lett. **89**, 287001 (2002).

• Competing order

 E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and A. P. Mackenzie, Annual Review of Condensed Matter Physics 1, 153 (2010).

• Disorder

- F. Rullier-Albenque, H. Alloul, F. Balakirev, and C. Proust, EPL (Europhysics Letters) 81, 37008 (2008).
- H. Alloul, J. Bobro, M. Gabay, and P. J. Hirschfeld, Rev. Mod. Phys. 81, 45 (2009).

Larger clusters

- In 2x2 T_c vanishes extremely close to half-filling. In larger cluster, earlier.
- Local pairs in underdoped (2x2)

8 site DCA, U=6.5t

8 site DCA, U=6t

Gull Parcollet Millis, PRL **110**, 216405 (2013)

Summary

- Below the dome, not QCP (but Mott)
- Maximum at Widom line
- T^* different from $T_c^{\ d}$
- First-order transition destroyed but traces in the dynamics
- Actual T_c in underdoped
 - Competing order
 - Long wavelength fluctuations (see O.P.)
 - Disorder

Bandwidth control and doping control of the Mott transition in organics

 $X = Cu_2(CN)_3 (t' \sim t)$

Phys. Rev. Lett. 95, 177001(2005) Y. Shimizu, et al. Phys. Rev. Lett. 91, (2003)

A doped BEDT organic

	W (eV)	U (eV)	U/W	BF	<i>T</i> _c (K)
κ -Cu(NCS) ₂ ^{a)}	0.57	0.46	0.81	0.50	10.4
κ -Cu[N(CN) ₂]Br ^{a)}	0.55	0.49	0.89	0.50	11.8
κ -Hg _{2.89} Br ₈ ^{b)}	0.26	0.465	1.79	0.45	4.3

Taniguchi et al. J. Phys. Soc. Japan, **76**, 113709 (2007)

R. N. Lyubovskaya et al. JETP Lett. 45, 530 (1987)

Doped BEDT

H. Oike, K. Miyagawa, H. Taniguchi, K. Kanoda PRL 114, 067002 (2015)

Widom line in organics

Charles-David Hébert, Patrick Sémon, AMT

t'=0.4*t*

t' = 0.4t overview

Generic case

Summary : organics

- Agreement with experiment
 - SC: larger T_c and broader *P* range if doped
 - Larger frustration: Decrease T_N and T_c
 - Normal state metal to pseudogap crossover
- Predictions
 - First order transition at low *T* in normal state (or remnants in SC state)
- Physics
 - SC dome without a QCP. Follows first-order.
 - SC from short range *J*.
 - Tc decreases at Widom line

Some Algorithmic details: 3 improvements

Continuous-time QMC : CT-HYB

$$\begin{split} H_{\rm imp} &= H_{\rm loc}(d_i^{\dagger}, d_i) + \sum_{i\mu} (V_{\mu i} a_{\mu}^{\dagger} d_i + V_{\mu i}^* d_i^{\dagger} a_{\mu}) \\ &+ \sum_{\mu} \epsilon_{\mu} a_{\mu}^{\dagger} a_{\mu}, \\ Z &= {\rm Tr} T_{\tau} e^{-\beta H_0} e^{-\int_0^{\beta} d\tau (H_{\rm hyb}(\tau) + H_{\rm hyb}^{\dagger}(\tau))} \\ &= \sum_{k\geq 0} \frac{1}{k!^2} \int_0^{\beta} d\tau_1 \cdots d\tau_k \int_0^{\beta} d\tau_1' \cdots d\tau_k' {\rm Tr} T_{\tau} e^{-\beta H_0} \\ &\times H_{\rm hyb}(\tau_1) H_{\rm hyb}^{\dagger}(\tau_1') \cdots H_{\rm hyb}(\tau_k) H_{\rm hyb}^{\dagger}(\tau_k'). \end{split}$$
$$&= \sum_{k\geq 0} \sum_{i_1\cdots i_k} \sum_{i_1'\cdots i_k'} \frac{1}{k!^2} \int_0^{\beta} d\tau_1 \cdots d\tau_k \int_0^{\beta} d\tau_1' \cdots d\tau_k' \\ &\times {\rm Tr} T_{\tau} e^{-\beta H_{\rm loc}} d_{i_1}(\tau_1) d_{i_1'}^{\dagger}(\tau_1') \cdots d_{i_k}(\tau_k) d_{i_k'}^{\dagger}(\tau_k') \\ &\times Z_{\rm bath} \left\{ \hat{V}_{i_1}^{\dagger}(\tau_1) \hat{V}_{i_1'}(\tau_1') \cdots \hat{V}_{i_k}^{\dagger}(\tau_k) \hat{V}_{i_k'}(\tau_k') \right\}, \quad \hat{V}_i = \sum_{\mu} V_{\mu i}^* a_{\mu} \end{split}$$

P. Sémon, G. Sordi, A.-M.S. Tremblay, Phys. Rev. B 89, 165113 (2014)

Reducing the sign problem

 $\cos\theta c'_{A_1\sigma} - \sin\theta c_{A_1\sigma}, \quad \sin\theta c'_{A_1\sigma} + \cos\theta c_{A_1\sigma}$

Ergodicity of the hybridization expansion with two operator updates and broken symmetry

$$H_{\rm imp} = H_{\rm loc}(d_i^{\dagger}, d_i) + \sum_{i\mu} (V_{\mu i} a_{\mu}^{\dagger} d_i + V_{\mu i}^* d_i^{\dagger} a_{\mu}) + \sum_{\mu} \epsilon_{\mu} a_{\mu}^{\dagger} a_{\mu},$$

 $Z = \text{Tr} T_{\tau} e^{-\beta H_0} e^{-\int_0^\beta d\tau (H_{\text{hyb}}(\tau) + H_{\text{hyb}}^{\dagger}(\tau))}$

$$=\sum_{k\geq 0}\frac{1}{k!^2}\int_0^\beta d\tau_1\cdots d\tau_k\int_0^\beta d\tau_1'\cdots d\tau_k'\mathrm{Tr}\mathrm{T}_\tau e^{-\beta H_0}$$
$$\times H_{\mathrm{hyb}}(\tau_1)H_{\mathrm{hyb}}^\dagger(\tau_1')\cdots H_{\mathrm{hyb}}(\tau_k)H_{\mathrm{hyb}}^\dagger(\tau_k').$$

$$\operatorname{Tr}[d_{\uparrow(0,\pi)}d_{\downarrow(0,\pi)}d_{\downarrow(\pi,0)}^{\dagger}d_{\uparrow(\pi,0)}^{\dagger}]$$
$$\times \Delta_{\mathbf{a}\uparrow(0,\pi),\downarrow(0,\pi)}\Delta_{\mathbf{a}\uparrow(\pi,0),\downarrow(\pi,0)}$$

P. Sémon, G. Sordi, A.-M.S. Tremblay, Phys. Rev. B 89, 165113 (2014)

Lazy Skip-List : 1 Lazy

Fast rejection algorithm : the lazy part

P. Sémon, Chuck-Hou Yee, K. Haule, A.-M.S. Tremblay, Phys. Rev. B **90**, 075149 (2014)

MC weights in CT-HYB some notation

$$w\{(i_1,\tau_1)\cdots(i'_k,\tau'_k)\} = \operatorname{Det} \Delta \operatorname{Tr}_{\operatorname{loc}} \left[\operatorname{T}_{\tau} e^{-\beta H_{\operatorname{loc}}} \times d_{i_k}(\tau_k) d_{i'_k}^{\dagger}(\tau'_k)\cdots d_{i_1}(\tau_1) d_{i'_1}^{\dagger}(\tau'_1) \right]$$

$$\operatorname{Tr}_{\operatorname{loc}} P_{\beta-\tau_{k}} F_{i_{k}} P_{\tau_{k}-\tau_{k}'} F_{i_{k}'}^{\dagger} \cdots F_{i_{1}} P_{\tau_{1}-\tau_{1}'} F_{i_{1}'}^{\dagger} P_{\tau_{1}'}$$

Lazy Skip List : Skip List

Tree structure : E. Gull, ETH thesis

Lazy Skip List : Skip List

Tree structure : E. Gull, ETH thesis

Some more details

Subproducts stored in blue arrows are emptied if tail coincides with red arrow

Lazy Skip-List: Speedup (beat Moore)

continued

continued

UNIVERSITÉ DE SHERBROOKE

Collaborators

Giovanni Sordi

David Sénéchal

Alexandre Day

Vincent Bouliane

Patrick Sémon

Kristjan Haule

Charles-David Hébert

Chuck-Hou Yee

André-Marie Tremblay

Le regroupement québécois sur les matériaux de pointe

CIAR The Canadian Institute for Advanced Research

Sponsors:

Fonds FCAR

Mammouth

compute • calcul

High Performance Computing

CREATING KNOWLEDGE DRIVING INNOVATION BUILDING THE DIGITAL ECONOMY

Le calcul de haute performance

CRÉER LE SAVOIR ALIMENTER L'INNOVATION BÂTIR L'ÉCONOMIE NUMÉRIQUE Calcul Québec

Review: A.-M.S.T. arXiv: 1310.1481

A.-M.S. Tremblay "Strongly correlated superconductivity" Chapt. 10 : Emergent Phenomena in Correlated Matter Modeling and Simulation, Vol. 3, E. Pavarini, E. Koch, and U. Schollwöck (eds.) Verlag des Forschungszentrum Jülich, 2013