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nvidia GPU architecture

nvidia

● 16 streaming multiprocessor (SM)

● 32 cores (650 Mhz) at each SM

● Theoretical peak performance > 1TFlops

Fermi M2090



  

GPU CUDA Memory Architecture 

● Device memory:
 Large but slow (global memory)

● Shared memory:
 Fast but small (48KB)
 Cannot shared among thread blocks

nvidia

● Registers
 Fast but small
 Cannot shared between threads

● Constant memory
 Read only, accessible for all threads

● Texture memory
 Read only,
 hardware filtering (interpolation) 



  

nvidia CUDA programming paradigm

● A kernel is executed by a grid
 of thread blocks

● Each streaming multiprocessor
 can contains multiple threads 

1. Allocate memory in the device

2. Set up the kernel

3. Launch the kernel

4. Transfer data from the device to
    the host

● Typical CUDA program 

nvidia

● 32 threads (1 wrap) are running 
 in parallel



  

Magnetic Transition

● Finite critical temperature transition from paramagnetic phase to 
 ferromagnetic phase. 

H=∑ij
J ij si s j−H∑i

si

● Ferromagnetic Ising model                   .J i , j=−1

T< T c T> T c



  

Frustration

Often in life we find out that our goals are mutually incompatible: we have to renounce 
some of them and we feel frustrated. For example, I may want to be a friend of both 
Mr. White and Mr. Smith. Unfortunately, they hate each other: it is then rather difficult 
to be a good friend of both of them (a very frustrating situation).

Chapter 0

Mezard, Parisi, and Virasoro

The situation is more complex when many individuals are present. In a classical
tragedy the scenario may be the following: there is a fight between two groups and the
various characters on the scene have to choose sides. In addition they all have strong
personal feelings, positive or negative, towards each other (it is a tragedy!) Some of
them are friends and some are enemies.



  

Frustration

● Cannot minimize the energy of every bond.

H=∑ij
J ij si s j−H∑i

si

● No unique spin configuration which can minimize the energy.

● Consider an Anti-Ferromagnetic Ising model               .J i , j=1

e.g. 3 spins 

or ?

● New concepts: ●Classical “spin liquid”
●Degenerate ground states
●Finite zero-temperature entropy
●May lead to “fractionalized” excitations,
dual descriptions



  

Frustration from Randomness

H=∑ij
J ij si s j−H∑i

s i

● Same Ising model, but the coupling is random                or J i , j=1 J i , j=−1

J=1

J=1 J=1

J=−1

or ?

● Example: a square parquet with one ferromagnetic bond.

● Frustration due to randomness, instead of purely from geometry.



  

Other Examples of Geometrical Frustration 

● 2D:Kagome lattice (AFM vector spin model)

H=∑ij
J si⋅s j

=J∑triangle
 si ,1 si ,2 si ,3

2
const.

Non-abelian vortices from anisotropic spin exchange.  

P. Chandra, P. Coleman, and I. Ritchey, PRB (1993)

Any configuration which satisfies the 
constraint that the total moment in each 
triangle is zero can be a valid ground state.

H=∑ij
J si⋅s j− si

z s j
z


Topological spin glass due to the freezing of non-abelian vortices.



  

Other Examples of Geometrical Frustration 

● 3D:Pyrochlore lattice (AFM vector spin model)

H=∑ij
J si⋅s j

=J∑tetrahedron
 si ,1 si ,2 si ,3 si , 4

2
const.

● Spin Glass phase from 
  Geometrical frustration + very small randomness

● Spin glass without explicitly competing ferromagnetic and 
   antiferromagnetic coupling

Greedan, et al. Solid State Commun (1986)
Gingras, et al. PRL (1996)
Saunders and Chalker, PRL (2007)
KMT, et al. arxiv:1009.1272

H=∑ij
Jij si⋅s j ij≪Jwhere the  randomness 



  

Outstanding challenges of spin glass simulations

1. Long equilibration time for equilibrium simulations. 

2. Cluster algorithm usually won't help (there are exceptions).

3. A shortlist of the methods proposed.

Simulated annealing (Kirkpatrick, Gelatt, Vecchi, ...)

Multicanonical (Berg,...)

Multi-variate Multicanonical (Hatano, Gubernatis,...)

Parallel tempering (Geyer, Swendsen, Wang, Hukushima, 
                               Nemoto, Marinari, Parisi,...) 

4. Parallel tempering seems to be most efficient for most glassy
    systems? Entropic barrier?

● Limitations of spin glass simulations.



  

Parallel tempering

● Schematic representation of a rough “landscape”.

● Periodically swap samples at different temperatures.



  

Computation aspects of Spin Glass Simulations

● The system sizes for equilibrium studies are relatively small, 
 usually ~ 10000 sites. (small memory) 

● Number of different disorder realizations is large, at least about
 >1000 and can be over 105 realizations. (large number of 
 Independent simulations)

● Parallel tempering requires a set of temperatures for the
 simulations, usually around 20-30. (again, large number of
 almost independent simulations) 

● For Ising spin glass, the operations on the spins are just 
 bit-manipulation. (simple instruction)

Small memory allocation  Simple operations

GPU computing



  

Some Related Works

● FPGA (Janus collaborations)

● M. Weigel, J. Comput. Phys. (2012) 

● M. Bernaschi, G.Paris, L. Parisi, arXiv (2010)

● T. Yavors'kii and M. Weigel, Eur. Phys. J. Special Topics (2012)

Continuous Spin

Discrete Spin

● T. Levy, G. Cohen, and E. Rabani, J. Chem Theory Comput. (2012) 



  

Lattice structure: 3D Stencil

● Nearest neighbors coupling in a cubic lattice

H=∑ij
J ij si s j−h∑i

si



  

Lattice structure: 3D Stencil

● Six nearest neighbors for each spin



  

Multi-spin coding

● General idea: Store many spins at one word

● Advantages:

Rebbi, Creutz, … 80's

● Discrete spins: e.g. Ising model, Potts model, lattice gas,...

'Simplify' the instruction as bit manipulation 

Important for GPU implementation

Saving memory allocation

Critical for GPU implementation

00010110

e.g. a 8-bit word



  

Multi-spin coding

● Calculating local energy
 (with bimodal random coupling)



  

Multi-spin coding

● Accumulating the local energy for six nearest neighbors 

● Three bits are required



  

Multi-spin coding (single bit scheme)

● One bit per spin for updating local energy



  

Multi-spin coding

● One bit per spin for calculating local energy



  

Multi-spin coding (three bits scheme)

● Three bits per spin for calculating energy

● Shifting the bit for the random coupling

● Calculating the energy at each bond



  

Multi-spin coding

● Sum over all six nearest neighbors.



  

Multi-spin coding (4 bits scheme)

● Combined the energy bits with the spin bits



  

Comparison of Multi-spin coding schemes 

●4 bits scheme required extra memory space 



  

Multi-spin coding (4 bits scheme)

● Use 1-bit to store one spin.



  

Multi-spin coding (4 bits scheme)

● Bit mask to expand the local energy 'e' into 4-bit segment 



  

Multi-spin coding (4 bits scheme)

● Sum over the local energy for all 6 neighbors in a 4-bit format 



  

Multi-spin coding (4 bits scheme)

● Concatenate the 3-bit for energy and the 1-bit for spin state. 



  

Comparison of multi-spin coding scheme



  

Parallel tempering move 

● All replicas of the same realization are in the same
 streaming processor

● Overhead of calculating the total energy

● Swap the rows of the table for tempering move



  

Outstanding challenges of spin glass simulations

1. What quantities for capturing phase transition. 
    (overlap order parameter?) 

2. Scale invariance at the critical point.

3. Crossing of dimensionless quantities, e.g. Binder ratio.

4. Correlation length (assuming exponential decaying correlation).

5. Avoiding k=0 susceptibility?

6. Ratio of susceptibilities at two different finite momenta?

● Interpretation of the data

q=1 /N ∑i
si
 si





  

Quantities for identifying phase transition

Measured quantities

B=
1
2
{3−

[〈(q−[〈q〉])4〉]

[〈(q−[〈q〉])2〉]
}

k =[〈qk −[〈q k 〉]2〉]

=
1

[sin 2/L] k=0,0,0 
k=2/L ,0,0

−1

R12=
k=2/L,0,0

k=2/L,2/L ,0

Binder ratio

Correlation length

Spin glass susceptibility

Susceptibility ratio



  

Spin glass at different dimensions

● Infinite dimension
● Exact mean field solution
 with RSB.

● 6 dimension
● Non-Gaussian terms are
 irrelevant, upper critical
 dimension. 

● 3 dimension
● Solid numerical evidence
 that spin glass exists at
 finite temperature.

● 2.5 dimension ● Could be the lower
 critical dimension?

● Whether the spin glass phase below six dimension 
  has some resemblance of the mean field solution? 

● Non-trivial distribution of spin overlap?

● Finite critical field?



  

Some recent studies

● No crossing in correlation length for 3D under field

Young and Katzgraber 2004



  

Some recent studies

● No ultrametricity in 3D

Hed, Young, Domany 2004

K , ,=d ,−d ,/d ,
K , ,=d ,−d ,/d ,

K , ,=0
● Ultrametricity in the state 
 space implies 

● Measure for the 
 ultrametricity 

d ,=1−q ,/2



  

Some recent studies

● Effective 1D long range model, no AT line in 3D, 4D data
 give conflicting results.

Larson, Katzgraber, Moore, Young 2012

H=−∑i , j
i , j J i , jSi S j−∑i

hiSi

i , j=0,1 Pi , j~r i , j
−2with probability



  

Some recent studies

● Crossing of  susceptibility ratio for 4D under field 

Banos et al., Jauns collaboration 2012



  

Benchmarking GPU Results

● Sanity Checks for the GPU code

REF data extracted from Katzgraber, Koerner, and Young PRB (2006)



  

Binder Ratio at a Finite Field

● Binder ratio at h=0.1



  

● Correlation length at h=0.1

No crossing for correlation length,
consistent with Young and Katzgraber PRL 2004.

Correlation Length at a Finite Field 



  

Susceptibility Ratio at a Finite Field 

● R
12

 at h=0.1



  

Tests for equilibration

● R
12

 at h=0.1, L=10



  

Effects from the number of realizations

● R
12

 at h=0.1



  

Susceptibility Ratio at a Finite Field 

● R
12

 at h=0.1



  

Conclusion

● The ratio of susceptibility is noise, more involved simulations are
 currently being done.

● GPU computing has a good potential for simulating glassy systems.

● We reproduce the results for 3D EA model without external field.

● We implemented parallel tempering and multispin coding algorithm
 for the simulation of EA model on GPU, 34ps / spin flip with 1 PT 
 move for every 10 sweeps, non-shared random number using
 GTX580 card.

● You can buy a GPU card at Bestbuy, Amazon... for ~$500.

http://lasigma.loni.org/


