Towards a numerically exact description of correlated open quantum systems

Alexey Rubsov

Moscow State University & Russian Quantum Center

Presenting the results obtained in cooperation with A.Shakirov, Y. Shchadilova, A. Poteryaev

Plan of the talk

- Metastability effects in open correlated systems: going beyond Lindblad approximation
- Emergence of temperature in an emissive correlated system
- Realistic LDA+DMFT calculations of ArCrS2
 multiferroic properties

Metastable dynamics: the model

Dynamics: about the Lindblad approximation

Master equation for a Markovian bath

$$\frac{d}{dt}\rho_{S}(t) = -i[H_{S},\rho_{S}(t)] + \mathcal{L}\rho_{S}(t)$$

The Lindblad form for the relaxation term:

- is valid in the leading order with coupling constant
- preserves sum rules
- contain creation-annihilation operators of only the site coupled to the bath

We found that Lidblad approximation is valid either for a non-correlated system, or for bath obeying infinite temperature/chemical potential.

Dynamics: beyond the Lindblad approximation

In the generalized theory the relaxation term in the master equation

$$\frac{d}{dt}\rho_{S}(t) = -i[H_{S},\rho_{S}(t)] + \frac{1}{2}\sum_{\alpha\beta}J_{\alpha\beta}\left(c_{\alpha}^{\dagger}\rho_{S}(t)L_{\beta} + \frac{1}{2}\sum_{\alpha\beta}J_{\alpha\beta}\left(c_{\alpha}^{\dagger}\rho_{S}(t)L_{\beta}\right)\right)$$

$$+ \bar{L}_{\beta} \rho_{S}(t) c_{\alpha}^{\dagger} - c_{\alpha}^{\dagger} \bar{L}_{\beta} \rho_{S}(t) - \rho_{S}(t) L_{\beta} c_{\alpha}^{\dagger} + \text{h.c.}$$

has a many-body nature (sum is over many-body states, f is Fermi function)

$$L_{\alpha} = \sum_{mn} f(\varepsilon_{nm}) \langle m | c_{\alpha} | n \rangle | m \rangle \langle n |$$

$$\bar{L}_{\alpha} = \sum_{mn} \left(1 - f(\varepsilon_{nm}) \right) \langle m | c_{\alpha} | n \rangle | m \rangle \langle n |$$

The formalizm passes into Lindblad assuming *f*=const.

Metastable dynamics: the results

Metastability occurs due to selecton rules for the transitions between many-body states

Calculus for realistic systems (say, surface cathalisys) will require huge matrices

The concept of temperature

Isolated systems

Open systems

Macroscopic limit

Thermalization of isolated systems

Classical systems: ergodic hypotesis

Quantum systems: Eigenstate thermalization hypotesys

All phase space available (trajectory is a microcanonical ensemble) Observables almost do not vary between eigenstates close in energy (eigenstate is a microcanonical ensemble)

M. Rigol et al. Nature 452, 854 (2008)

Thermalization of open systems

Detailed balance principle

$$r_{m \to n} e^{-E_m/T} = r_{n \to m} e^{-E_n/T}$$

Thermalization without detailed balance

Macroscopic limit: averages

emissive system

Finite-size: Boltzmann (???) distribution of populations

Hard-core bosons on a lattice with emission

Reservoir

$$H_I = \alpha \sum_{ki} (a_k^{\dagger} b_i + b_i^{\dagger} a_k) \theta(\varepsilon_k - \varepsilon_0)$$

The evolution of a system at 4-site lattice

Coarse-grained master equation

$$\frac{d}{dt}P_n^N = \sum_m R_{nm}^{N+1}P_m^{N+1} - \sum_m R_{mn}^N P_n^N$$
$$\langle N, n | \rho_S | N, n \rangle \equiv P_n^N$$

Fermi's golden rule

$$R_{mn}^{N} = 2\pi\Omega_{0}\alpha^{2}\sum_{i=1}^{L} |\langle N-1, m|\hat{b}_{i}|N, n\rangle|^{2}$$

Distribution over stable states

Bolzmann statistics in the sectors with same particle numbers

Distribution over intermediate states

Transition rate vs. transition energy

Roots of the "temperature"

Isolated quantum systems: Eigenstate thermalization hypotesys

Emissive quantum systems: This work

Each eigenstate itself formsEmissing a particle from an eigenstatea microcanonical ensembleforms a canonical ensembleWorking with soft-core bosons will require huge matrices

Multiferroics

Multiferroics exhibit more than one primary ferroic order parameter simultaneously

Ferromagnetism
 Ferromagnetist

- ✓ Ferroelectricity
- ✓ Ferroelasticity
- ✓ Ferrotoroidicity

Crystal structure of AgCrS₂ Low-T (Cm) (R3m High-T 20 (°) $\left[\frac{1}{2}\frac{3}{2}1\right]_{n}$ $\left[\frac{1}{2}\frac{3}{2}1\right]_{m}$ (b) (c) [010] Ag S₂ $\left[\frac{1}{2}\frac{1}{2}1\right]$ $\left[\frac{1}{2}\frac{1}{2}\frac{1}{2}\right]_{m}$ 6.0125(1) [102]_ b a

Layered structure with triangular topology and two phase transitions at 670 K and 41 K from R-3m via R3m to Cm

Damay et al., Phys. Rev. B 83, 184413 (2011

Local environment of Cr ions

Cr ions are surrounded by octahedrons of sulfur

Ag1+Cr3+S²⁻2

3 electrons in degenerate t_{2g} subshell

Magnetic properties

Effective moment value confirms 3 electrons in t_{2g} subshell !!!

Unusual magnetic structure with double stripes!!!

Damay et al., Phys. Rev. B 83, 184413 (2011)

T_N = 42 K μ = 2.7 μ_B

Low temperature electrical properties of AgCrS,

Electric polarization

Multiferroic below 42 K with $\Delta P = 20 \ \mu C/m^2$

Singh et al., Chem. Mater. 21, 5007 (2009

Huge overestimation of polarization (2 orders of magnitude)!!! Clear importance of correlations Starting point insensitive (both wrong)

Polarization for strongly correlated systems

•Nourafkan & Kotliar formalism

$$\Delta \mathbf{P} = -\int_0^1 d\xi \left(\frac{ie}{2N\beta}\right) \sum_{\mathbf{k}\sigma} \sum_m Tr\left(\frac{\partial\hat{G}^{-1}}{\partial\mathbf{k}}\hat{G}\frac{\partial\hat{G}^{-1}}{\partial i\omega_m}\hat{G}\frac{\partial\hat{G}^{-1}}{\partial\xi}\hat{G} - \frac{\partial\hat{G}^{-1}}{\partial\mathbf{k}}\hat{G}\frac{\partial\hat{G}^{-1}}{\partial\xi}\hat{G}\frac{\partial\hat{G}^{-1}}{\partial i\omega_m}\hat{G}\right)$$

Local magnetic moment of AgCrS₂ in LDA+DMFT

Strong dependence on the orbital degeneracy!!!

Realistic material calculations or how it should be done for AgCrS₂

- 8 f.u. in correct 4SL magnetic structure
- Accurate band structure calculations along R3m-Cm path (about 5 points)
- LDA+DMFT calculation at each structural point
- Nourafkan & Kotliar formalism to calculate electric polarization

All steps are time consuming!!!

DMFT example with the same "technical" parameters and 128 procs

- 3-bands, β=30
- 3-bands, β=50
- 5-bands, β=30
- 12 mins (time per iteration)
- 20 mins
 - 70 mins