Energy-Resolved Wannier States with Assigned Local Symmetry

Wei Ku (顧 威) Brookhaven National Lab SUNY Stony Brook University

supported by DOE Grant No. DE-FG03-01ER45876

Generalized Wannier function

$$|\mathbf{R}n\rangle \equiv |\overline{\mathbf{k}}n\rangle e^{-i\overline{\mathbf{k}}\cdot\mathbf{R}}/\sqrt{\#}$$

$$\left|\mathbf{k}n\right\rangle = \left|\phi_{\mathbf{k}\overline{m}}\right\rangle \left\langle\phi_{\mathbf{k}\overline{m}}\right|\mathbf{k}n\right\rangle$$

$$\left\langle \phi_{\mathbf{k}m} \left| \mathbf{k}n \right\rangle = \left\langle \phi_{\mathbf{k}m} \left| g_{\overline{n}'} \right\rangle M_{\overline{n}'n} \right\rangle$$

$$M_{n'n}^{-2} \equiv \left\langle g_{n'} \left| \phi_{\mathbf{k}\bar{m}} \right\rangle \left\langle \phi_{\mathbf{k}\bar{m}} \left| g_{n} \right\rangle \right\rangle$$

Nicola Marzari and David Vanderbilt, *Phys. Rev. B* **56**, 12847 (1997). Ivo Souza, Nicola Marzari, and David Vanderbilt, *Phys. Rev. B* **65**, 035109 (2002) Wei Ku, H. Rosner, W. E. Pickett, and R. T. Scalettar, *Phys. Rev. Lett.* **89**, 167204 (2002)

Multi-Energy-Resolved Construction with Symmetry

Wei Ku, H. Rosner, W. E. Pickett, and R. T. Scalettar, Phys. Rev. Lett. 89, 167204 (2002)

Desired Properties of Wannier States

Simplest physical picture

- → essential Hilbert space including as much physics/chemistry as possible
- \rightarrow more control on the construction, instead of unique MaxLoc. choice
- Locality
 - ightarrow ideal / natural in strongly correlated systems
- Energy resolution ¹
 - \rightarrow minimal, simplest basis for low energy physics
 - \rightarrow non-perturabative inclusion of hybridization
 - \rightarrow narrow energy spectrum, good for RG and MBPT, and analyzing experiments
- Point symmetries ²
 - \rightarrow simpler analysis & increased sparseness in "couplings"
- Orthonormality ¹
 - ightarrow well-defined basis for the 2nd quantization
- Flexible choice of Hilbert space ¹²³
- Simple, efficient procedure of construction (avoid $\langle \phi_{\mathbf{k}j} | e^{-i\mathbf{q}\mathbf{x}} | \phi_{\mathbf{k}+\mathbf{q}j'} \rangle$ or iterations)²
- General procedure independent of underlying representation ³
- 1. in contrast with atomic representation
- 2. in contrast with MaxLoc construction
- 3. in contrast with "down-folding" of NMTO

Definition of (Generalized) Wannier States

 $|Rn\rangle \equiv |\bar{k}n\rangle e^{-i\bar{k}\cdot R}/\sqrt{\#}$

 $|kn\rangle = |\phi_{k\overline{m}}\rangle\langle\phi_{k\overline{m}}|kn\rangle$

Our Strategy:

- Information from Bloch states and their eigenvalues
- Multiple-energy windows
- Maximized contribution in specified local symmetry
- Specified bias for better control

Definition of (Generalized) Wannier States

40.0 $|Rn\rangle \equiv |\bar{k}n\rangle e^{-ik\cdot R}/\sqrt{\#}$ 30.0 30.0 20.0 20.0 $|kn\rangle = |\phi_{k\overline{m}}\rangle\langle\phi_{k\overline{m}}|kn\rangle$ 10.0 10.0 Energy (eV) Energy (eV) 0.0 0.0 $\langle \phi_{km} | kn \rangle = \langle \phi_{km} | g_{\overline{n}'} \rangle M_{\overline{n}'n}$ -10.0 -10.0 -20.0 -20.0 $M_{n'n}^{-2} \equiv \langle g_{n'} | \phi_{k\bar{m}} \rangle \langle \phi_{k\bar{m}} | g_n \rangle$ -30.0 -30.0 -40.0 w -40.0 Λ XZWK XZWK

Δ

d

EF

Λ

f

Δ

$\rho = 0.0002$

Tight-Binding Parameters

< R j' | h^{DFT} | 0 j > of γ -Ce (eV)

occupation # 2 2 2 0.159 0.148 0.148 0.148 0.039 0.039 0.039 0.540 0.540 0.565 0.565 0.565 0.34	occupation #	2	2	2	2	0.159	0.148	0.148	0.148	0.039	0.039	0.039	0.540	0.540	0.565	0.565	0.565	0.344
---	--------------	---	---	---	---	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------

sparser than atomic tight-binding parameters !

Tight-Binding Parameters

(1 0 0) s	s	рх	ру	p z	f xyz	f x(5x2-3r2)	f y(5y2-3r2)	f z(5z2-3r2)	f x(y2-z2)	f y(z2-x2)	f z(x2-y2)	d 3z2-r2	d x2-y2	d yz	d zx	d xy	s	(1 0 0) s
рх ру рz		0.003	0.001	0.001														р х р у р z
f xyz f x(5x2-3r2) f y(5y2-3r2)					0.031	-0.023	-0.004			-0.009		-0.010	0.017	-0.015		0.009	-0.003	f xyz f x(5x2-3r2) f y(5y2-3r2)
f z(5z2-3r2) f x(y2-z2) f v(z2-x2)							-0.009	-0.004	-0.002	0.011	0.009	-0.002	-0.001		0.009	-0.007		f z(5z2-3r2) f x(y2-z2) f v(z2-x2)
f z(x2-y2)							0.000	0.009		0.011	0.011				0.007	0.007		f z(x2-y2)
a 322-14 a x2-y4						0.010 -0.017			0.002 0.001			-0.115 0.019	0.019 -0.137				-0.228 0.395	a 322-14 a x2-y4
d yz d zx d xv					0.015		-0.009	-0.009		0.007	-0.007			0.145	0.013	0.013		d yz d zx d xv
s						0.003						-0.228	0.395				-0.244	s
(2 1 1) / 2	S	рх	ру	p z	f xyz	f x(5x2-3r2)	f y(5y2-3r2)	f z(5z2-3r2)	f x(y2-z2)	f y(z2-x2)	f z(x2-y2)	d 3z2-r2	d x2-y2	d yz	d zx	d xy	S	(2 1 1) / 2
s nx	0.001	0.001																S n X
ру py pz		0.001	-0.003 0.004	0.004 -0.003														р у p z
f xyz					-0.024	0.001	-0.005	-0.005		0.001	-0.001	0.001	-0.001	-0.011	0.001	0.001	-0.006	f xyz
f x(5x2-3r2)					0.001	0.012	0.015	0.015	0.012	0.006	-0.006	-0.002	0.004	0.004	-0.001	-0.001	-0.001	f x(5x2-3r2)
f z(5z2-3r2) f z(5z2-3r2)					-0.005	0.015	-0.011	0.003	-0.013	-0.005	0.001	0.006	0.009	0.004	-0.002	-0.002	0.001	f z(5z2-3r2) f z(5z2-3r2)
f v(z2-x2)					0.001	0.006	-0.005	0.001	-0.020	0.004	0.002	0.002	0.001	0.005	0.001	0.003	0.003	f v(z2-x2)
f z(x2-y2)					-0.001	-0.006	-0.001	0.005	-0.001	0.002	0.004	0.001	-0.001	-0.005	-0.003	-0.001	-0.003	f z(x2-y2)
d 3z2-r2					-0.001	0.002	0.011	-0.006	-0.002		-0.001	-0.038	0.014	-0.041	-0.023	-0.010	-0.033	d 3z2-r2
d x2-y2					0.001	-0.004	0.004	-0.009	-0.001	-0.001	0.001	0.014	-0.054	0.071	0.025	0.033	0.058	d x2-y2
a yz d zx					0.011	-0.004	-0.004	-0.004	-0.010	-0.005	0.005	-0.041	0.071	-0.026	-0.032	-0.032	0.134	a yz d zx
d xv					-0.001	0.001	0.002	0.002	0.010	-0.003	0.001	-0.023	0.033	-0.032	0.001	-0.053	0.028	d xv
s					0.006	0.001	-0.001	-0.001	2.510	-0.003	0.003	-0.033	0.058	0.134	0.028	0.028	0.087	s
	s	рх	ру	p z	f xyz	f x(5x2-3r2)	f y(5y2-3r2)	f z(5z2-3r2)	f x(y2-z2)	f y(z2-x2)	f z(x2-y2)	d 3z2-r2	d x2-y2	d yz	d zx	d xy	s	

no fitting!

Bond-Centered WS – Si

Bond-centered Wannier orbitlas in CaB6

Energy (eV)

Non-Trivial Symmetry – CaB6

Bias for More Control – La₂CuO₄

 $Cu - dx^2 - y^2$ $Cu - dz^2$

4.0

2.0

0.0

-2.0

-4.0

Energy (eV)

4.0

2.0

0.0

-2.0

-4.0

-6.0

-8.0

O2 – p z

Bias for More Control

Bias for More Control

(alpha')	(meV)	(meV)
000	-85.3	94.5
010	-471.6	-430.0
-1 0 0	-471.6	-430.0
110	107.9	33.6
1 -1 0	107.9	33.6
0.5 0.5 0.5	2.9	-10.1
-0.5 -0.5 0.5	2.9	-10.1
020	-72.7	-30.8
-200	-72.7	-30.8
120	-0.7	-27.6
2 -1 0	-0.7	-27.6
0.5 1.5 0.5	-1.1	0.1
-1.5 -0.5 0.5	-1.1	0.1
1.5 1.5 0.5	-0.7	8.9
1.5 -1.5 0.5	-0.7	8.9
220	8.5	-1.0
2 -2 0	8.5	-1.0
030	-19.2	4.3
-300	-19.2	4.3
	•	

Half-Filled Wannier States of Cu-O in La₂CuO₄

Systems with impurities: Ga₃₁MnN₃₂

Two different representations: d_4 vs d_5

Gapless Charge-Density Wave in TaSe₂

- commensurate CDW
- gapless excitations throughout the whole Fermi surface in CDW phase ?
- Fermi surface Nesting vector too large for q^{CDW} ?

R. Liu, et. al. Phys. Rev. B, 5212 (2000)

Conventional gapped CDW picture

Fermi surface instability

 → divergent χ(q^{CDW}, ω→0)
 → nesting preferred

 gap → energy gain

Local Picture: Low-Energy Wannier Function

3z² - r² (a_g) symmetry near EF, noticeable hybridization with e_g'
WS in one site contains complete information of the full k-space
center: a_g symmetry; tail: e_g' symmetry

Surprising Hopping Path

$$t_{Rn,R'n'}^{DFT} = \left\langle Rn \left| h^{DFT} \right| R'n' \right\rangle$$

$$t_{1} = 38 (\text{meV})$$

$$t_{2} = 115 (\text{meV})$$

$$t_{\perp,1} = 29 (\text{meV})$$

$$t_{\perp,2} = 23 (\text{meV})$$

$$t_{\perp,2} = 23 (\text{meV})$$

- perfect tight-binding "fit" to the band structure
- surprising hopping strength to 2nd nearest neighbors

• phase interference from e_g ' hybridization tail $\rightarrow t_2 \gg t_1$

Gapless Charge-Density Wave in TaSe₂

- x^2-y^2 hybridization $\rightarrow t_2 \gg t_1 \rightarrow$ decoupling of 3 sublattices
- minimization of tight-binding H against distortion
 - \rightarrow one sublattice undistorted
 - \rightarrow gapless band structure

Spin & orbital: Ferro-orbital order & anisotropic magnetic structure in 1111 (&122)

Chi-Cheng Lee, Wei-Guo Yin & Wei Ku Phys. Rev. Lett. **103**, 267001 (2009)

Stripy magnetic and lattice structure

- Structure transition at 155k; Stripy AFM order at 137K (AF bond longer?)
- What drives the magnetic transition?
 Fermi surface instability? (SDW due to nesting?)
- What drives the structural transition?

Transition temperature so close to magnetic T_N : related?

Implications to electronic structure and superconductivity?

Energy resolved, symmetry respecting Wannier function

- small crystal field splitting
- degenerate *xz* and *yz*
 - \rightarrow orbital freedom !

methods see: W. Ku et al., PRL 89, 167204 (2002); W. Yin et al., PRL 96, 116405 (2006)

Comparing LDA band structures

- in NM 1st-BZ
- $d_{xz} \& d_{yz}$ most relevant to the low-E
- Only d_{yz} splits strongly near $E_{\rm F}$
- d_{yz} more spin polarized ~0.34 $\mu_{\rm B}$ than d_{xz} (~0.15 $\mu_{\rm B}$)
- more different with *U*=2eV
 - 0.58 vs. $0.23 \mu_{\rm B}$
 - \rightarrow orbital symmetry broken
 - $\Delta \sim W$
 - \rightarrow large (ω , **k**)-space involved
 - → local picture more suitable
 - \rightarrow Fermi surface nesting not
 - essential
- \rightarrow SDW less convenient

unfolding methods see: Wei Ku *et al.*, PRL **104**, 216401 (2010)

Anti-intuitive hopping parameters

<wfs h wfs></wfs h wfs>	Fe1 z ²	x ² -y ²	yz	XZ	ху
Fe2 (Fe4) z^2	0.13	0.31 (-0.31)	-0.10 (0.00)	0.00 (0.10)	0.00
x ² -y ²	0.31 (-0.31)	-0.32	0.42 (0.00)	0.00 (0.42)	0.00
yz	-0.10 (0.00)	0.42 (0.00)	-0.40 (-0.13)	0.00	0.00 (0.23)
XZ	0.00 (0.10)	0.00 (0.42)	0.00	-0.13 (-0.40)	-0.23 (0.00)
xy	0.00	0.00	0.00 (0.23)	-0.23 (0.00)	-0.30
Fe3 z ²	0.06	0.00	-0.08	0.08	0.26
x ² -y ²	0.00	-0.10	0.12	0.12	0.00
yz	0.08	-0.12	0.25	-0.07	-0.05
XZ	-0.08	-0.12	-0.07	0.25	0.05
ху	0.26	0.00	0.05	-0.05	0.16

- Unusual coupling direction
- Fe2 Cubic symmetry broken seriously by As → Fe-As phonon modes important
- Fe3 Perpendicular hopping direction!

Chi-Cheng Lee *et al.*, PRL **103**, 267001 (2009)

Examples of low-E Wannier functions

- Most relevant to the low-E
- The only ones that knows x != y
- Perpendicular extension of the hybridization tail due to As atoms !

C-AF magnetic structure and ferro-orbital order

 $\Delta E = -t^2/(U'-J_H)$ yz
xz
Fe1
Fe2

- Strongly anisotropic super-exchange: $J_{1x} > J_2 >> J_{1y}$
 - \rightarrow no competition with G-AF at all ! $J_1 \sim 2J_2$ irrelevant !
 - → Heisenberg model inadequate
- Orbital polarization and ferro-orbital correlation important
 Unusual coupling direction and strong anisotropic hoppings !
 - \rightarrow *a* > *b*: AF across long bond (rare)
 - → strong in-plane nematic-like anisotropic response transport, optical, and lattice properties

Chi-Cheng Lee *et al.*, PRL **103**, 267001 (2009)

Local Picture for Strongly Correlated Systems

$$H = H_0 + V = H_{local} + H_{nonlocal}$$

- V too big for perturbation
- Maximize the terms in the "local" part

 \rightarrow symmetric Wannier Representation \rightarrow defines "local"

- Treat local part "accurately"
- Add non-local part as modification

How to define "local" in CT-insulators?

- Periodic symmetry
- Point group symmetry
- Simultaneously keep both? How to split the Hilbert space?

Symmetric Wannier Functions for CT-Insulators

W. Ku et al., Phys. Rev. Lett. 89, 167204 (2002).
R. L. Barnett et al., Phys. Rev. Lett. 96, 026406 (2006).
W.-G. Yin et al, Phys. Rev. Lett. 96, 116405 (2006).

O-p orbitals → additional Ni-d orbitals (no double counting of O orbitals)
"local" is now defined by this "super-atom"

Super Atom for Charge Transfer Insulator

 $H = H_{local} + H_{nonlocal}$ (exact) (modification)

Maximize the contributions of "local atom"

Density response for super atom

(eg-t2g=0.65eV)

Multiplet Splitting Made Possible with MB Hilbert Space

Propagation of Tightly-Bound Excitons: case study of LiF

- Tightly bound exciton
- ◆ Charge transfer insulator
 → p-h in different atoms
- Frenkel or Wannier exciton ?
- Dispersion
 - \rightarrow propagation in space/time
- Inelastic X-ray scattering
- Structured spectral weight
- Clear dispersion at large q !
- observe *fs* dynamics

P. Abbamonte et. al., PNAS 2008

Excitons in LiF as a Frenkel Exciton in a "Super Atom"

Matrix Element and Structure in q-space

P. Abbamonte et al., PNAS 2008

Propagation of tightly bound excitons

• Treat tightly bound excitons (and other local excitations) as a composite boson. Define its propagation kinetic kernel T via local and full propagator $D[H_L]$ and D[H]:

 $D[H] = D[H_L] + D[H_L]TD[H]$

- T integrates out all the pair fluctuation in space and encapsulates propagation and decay processes.
- We then approximate *T* using unbound exciton propagator $T = D^{-1}[H_L] - D^{-1}[H] \sim D_0^{-1}[G[H_L]] - D_0^{-1}[G[H]]$
- Separation of local many-body problem from non-local propagation
- Many orders of magnitudes cheaper than Bethe-Salpeter equation

C-C Lee et al., Phys. Rev. Lett. 111, 157401 (2013)

Effective Two-Particle Hopping

Define effective two particle kinetic kernel *T* via

$$D[H] = D[H_L] + D[H_L]TD[H]$$

$$D = D_L + T$$

$$D_L = T$$

$$D_$$

using the empty bubble

$$D_0(RN,R'N';t,t') = G(Rp,R'p';t,t')G(R'h',Rh;t',t)$$

T gives hopping of p-h pair in real space \rightarrow dispersion in *q*-space

C-C Lee et al., Phys. Rev. Lett. 111, 157401 (2013)

Effective Two-Particle Hopping in LiF

 $T(\omega)$ is complex and strongly ω -dependent to fully account for

- 1. Landau continuum (integrating out virtual pair breaking processes) \rightarrow exact for $E_b = 0$
- 2. Lower mobility with stronger p-h binding \rightarrow correct t^2/E_b behavior
- 3. Renormalization of on-site energy from kinetic energy

Effective Two-Particle Hopping

Define effective two particle kinetic kernel *T* via

$$D[H] = D[H_L] + D[H_L]TD[H]$$

$$D = D_L + T$$

$$T = D^{-1}[H_L] - D^{-1}[H_L]$$

$$T = D^{-1}[H_L] - D^{-1}[H_L]$$

$$= (D_0^{-1}[G[H_L]] - I[H_L]) - (D_0^{-1}[G[H]] - I[H])$$

$$= D_0^{-1}[G[H_L]] - D_0^{-1}[G[H]]$$

using the empty bubble

$$D_0(RN,R'N';t,t') = G(Rp,R'p';t,t')G(R'h',Rh;t',t)$$

T gives hopping of p-h pair in real space \rightarrow dispersion in *q*-space

C-C Lee et al., Phys. Rev. Lett. 111, 157401 (2013)

Exciton Band Structure

1. Full results similar to the diagonalization of $\omega_{exciton} + \operatorname{Re}T(\tilde{\omega}_{exciton})$

2. Similar dispersion to the F *p*-bands (same symmetry)

C-C Lee et al., Phys. Rev. Lett. 111, 157401 (2013)

Observation of Multiple Exciton Bands

- 1. Similar weight in momentum space
- 2. Similar dispersion
- 3. Switching of bands (breaks in intensity)

Future development: systems with stronger correlation one scenario within DOE-CMSN

