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outline

• analytic continuation

• singular value decomposition

• ill-posedness and role of non-negativity constraint

• average spectrum approach

• blocked mode sampling

• results depend on discretization

• separating numerics from default model

• a practical approach



Green/correlation function
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spectral function A(ω) defines analytic function 
in upper/lower half of complex frequency plane
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analytic continuation

A(ω) ≥ 0 for fermions

A(-ω) = -A(ω)  for bosons: consider A(ω)/ω ≥ 0 for ω ≥ 0
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Fredholm equation

g(y) =

Z
K(y , x) f (x) dx

data kernel model

|gi = K|f i

inverse problem: given g(y) find f(x)

ill posed



singular value decomposition

SVD of kernel

K = USV †

V = (|v1i, |v2i, . . .)

U = (|u1i, |u2i, . . .)

orthonormal basis in model space

orthonormal basis in data space

spectral representation of kernel

K|vi i = si |ui i

S diagonal rectangular matrix with si ≥ si+1 (singular values)

|gi = K|f i



singular values and singular modes

singular values 
decay exponentially

singular modes vi
oscillate more

g(y) =

Z
K(y , x) f (x) dx

kernel smoothes model



least-squares solution

|gi = K|f i

to find best f, minimize
����K|f i � |gi

����2

|f i =
X
|vi ihvi |f i =

X
fi |vi i  K|f i =

X
fisi |ui i

|gi =
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|ui ihui |gi =
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gi |ui i
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ill posedness

modes with small singular value hardly affect data
small errors in data are catastrophically amplified

the affected modes tend to be highly oscillating
sawtooth noise in least-squares fit

|fLSi =
X gi
si
|vi i

Picard condition
���� |f i

����2 =
X
|hvi |f i|2 =

X |hui |gi|2

s2i
<1

implies smoothness of data

noise in data leads to violation of Picard condition

fi = gi /si  variance in data σi ⇒ variance in model: σi /si



ill posedness



Tikhonov regularization

minimize
����K|f i � |gi

����2 + ↵
���� |f i
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fi =
s2i

s2i + ↵
2

gi
si

determine regularization parameter α

L-curve



effect of regularization



effect of non-negativity constraint



regularization by constraint

non-negativity constraint regularizes singular modes:
modes with small si adjust such that leading modes can be optimized



Bayesian inference

take quality of data and a priori knowledge about model into account

|gi = K|f i

data given by mean ḡ and covariance Σ

P (f |ḡ,⌃) =
P (ḡ,⌃|f )P (f )
P (ḡ,⌃)

probability of model f given measured data ḡ, Σ 

likelihood

P (g|ḡ,⌃) / e�
1
2
hg�ḡ|⌃�1|g�ḡi

prior probability P(f): a priori information about model

assume
P (g) = P (ḡ,⌃)

P (ḡ,⌃|f ) =
Z
Dg P (ḡ|g)P (g|f ) = P (ḡ,⌃|Kf )

/ e�
1
2
hKf�ḡ|⌃�1|Kf�ḡi



likelihood function

absorb covariance in data/kernel

P (ḡ,⌃|f ) / e�
1
2
hKf�ḡ|⌃�1|Kf�ḡi

⌃�1 = W †WCholesky decomposition

hKf � ḡ|⌃�1|Kf � ḡi = h Kf � ḡ|W †W | Kf � ḡi
= hWKf �Wḡ | WKf �Wḡi
= h K̃f � g̃ | K̃f � g̃i



prior probabilities

• Tikhonov

• MaxEnt

• non-informative

P (f ) / exp
✓
�↵

Z
f (x) ln (f (x)/d(x)) dx

◆

P (f ) /
⇢
0 if 9x : f (x) < 0
1 otherwise

P (f ) / exp
⇣
�
↵

2

hf |f i
⌘

favor solutions with small norm

favor solutions close to default model d(x)

all a priori admissible solutions equally probably



how to pick model given P(f |ḡ,Σ) ?

minimize cost of being wrong

best estimate minimizes expected loss
Z
Df L(f̄ , f )P (f |ḡ,⌃)

loss function L(ḟ,f)

L(¯f , f ) =

⇢
0 when

¯f = f
1 otherwise

 ¯f maximizes P (f |ḡ,⌃)

L(f̄ , f ) =
����|f̄ � f i

����2  f̄ =

Z
Df f P (f |ḡ,⌃)

average over posterior
respects constraint 

if set of admissible functions 
is convex



Stochastic Sampling
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The Average Spectrum Method for the Analytic Continuation 
of Imaginary-Time Data · 
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In this paper we present the average spectrum method, a new method for obtaining real-
frequency information from imaginary-time quantum Monte Carlo data. This technique 
does not require the adjustable parameters, smoothness constraints, or model forms 
of some previous techniques, yet produces smooth, consistent spectra from noisy data. 
Various tests of the method on mock data are presented, as well as realistic applications 
to the two-dimensional Hubbard model. 

1. Introduction 

Many of the most intercst.ing observablcs of a many-electron system-densities of states, 
frequency-dependent susceptibilities, and the conductivity, for example-are dynami-
cal quantities, i.e., they are functions of real frequency. Unfortunately, it is usually 
much easier to calculate static or imaginary-time correlation functions than to calcu-
late functions of real time or frequency. This is particularly true for finite-temperature 
fermion Monte Carlo, which has had considerable success in studies of strongly interact-
ing electron models such as the Hubbard model. With this technique, imaginary-time 
dependent quantities can be evaluated directly, but dynamic quantities can only be 
obtained by analytically continuing the imaginary-time data. The statistical errors 
inherent in the Monte Carlo data make this analytic continuation especially difficult. 
Nevertheless, the importance of the information that can be obtained even from fairly 
low resolution dynamical spectra, and the lack of alternative ways of obtaining these 
spectra, have prompted a flurry of recent work in developing new techniques for per-
forming this analytic continuation. In this paper we describe a new continuation tech-
nique and test the method on both simple test eases and real Monte Carlo data. 

Until recently, only a few attempts had been made to perform this analytic con-
tinuation. In one of the first approaches, Pade approximants were used to analytically 
continue quantities calculated from imaginary time Monte Carlo simulations for models 
with a single degree of freedom and for magnetic impurities.1•2 for more com-
plicated models, however, the Pade technique has insufficient resolution and stability. 
Schuttler and Scalapino developed a more stable technique, based on a least squares 
fitting procedure, and applied it to a system of spinless interacting fermions in one 
dimension.3 Unfortunately, this technique gave largely qualitative, low resolution re-
sults. Within the last year, however, several advances have occurred in this area. White, 
Scalapino, Sugar, and Bickers4 (hereafter denoted by WSSB) developed a procedure 
based on least squares which found the smoothest positive-definite real-frequency spec-
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Stochastic Sampling
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impose a priori via constraints
variance in data smoothes model



Gaussian distribution in f

pseudo-inverse of kernel K

|f̄ i /
Z

F
Df e�

1
2
hK̃f�g̃|K̃f�g̃i |f i

rewrite as Gaussian in f

hK̃f � g̃|K̃f � g̃i = hf � K̃�g̃|K̃†K̃|f � K̃�g̃i � hg?|g?i

K =
X

i

|ui isi hvi | K� =
X

si>0

|ui ihvi |
si

g⊥: component of data that cannot be described by model

X

i

s̃2i |fi |2 � s̃i(f ⇤i g̃i + g̃⇤i fi) + |g̃i |2 =
X

s̃i>0

s̃2i

����fi �
g̃i
s̃i

����+
X

s̃i=0

|g̃i |2



Gibbs sampling

write model in (finite) basis |f i =

0

B@
f1
f2
...

1

CA

sample component fi → fi’ keeping all other components fixed

Gaussian with 

non-negativity constraint limits allowed values → truncated Gaussian

can be efficiently sampled

|f i =
✓
fi
f?

◆
K̃ =

�
K̃i , K̃?

�
g̃i = g̃ � K̃?f?

�2 = 1/K̃†i K̃i µ = �
2 K̃†i g̃i

P (fi ! f 0i |f?) = exp

 

�
1

2

h ˜Ki f 0i � g̃i | ˜Ki f 0i � g̃i i
h ˜Ki fi � g̃i | ˜Ki fi � g̃i i

!



mode sampling

in SVD basis the singular modes have independent Gaussians

P (fi ! f 0i |f) = exp
✓
�
1

2

|f 0i � g̃i/s̃i |2

|fi � g̃i/s̃i |2

◆

but are coupled by constraint f(ω) = ∑ fi vi(ω) ≥ 0

coupling of modes reduces variance of modes with small si 



regularization by constraint

non-negativity constraint regularizes singular modes:
modes with small si adjust such that leading modes can be optimized



component sampling

in frequency basis f(ωi)

non-negativity constraint: f(ωi) ≥ 0

P (f (!i)! f 0(!i)|f?) = Gaussian with 

��2 =

Z
d⌧ |K̃(⌧,!i)|2 µ = �2

Z
d⌧ gi(⌧)K

⇤(⌧,!i)



choice of basis

component sampling mode sampling

best at constraint best at maximum



efficiency: thermalization

model ≈ 0



efficiency: autocorrelation

model ≈ 0



blocked mode sampling

�� �� ���������������������

��	
��

��	
����	
��

��	
�� ��	
�
��	
�� ��	
��

����� �

����� �

����� �

����� �	�����

�
�
�
�

�� �� ���������������������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�	������
�	�

subdivide ω-axis into subintervals on which to do mode samping

use different primes for subdivision to avoid seams



starting point
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NNLS solutions tend to be on boundary of admissible set
take linear combination of several NNLS solutions 

obtained from adding noise to data



test cases

Analytical continuation of imaginary axis data for optical conductivity

O. Gunnarsson,1 M. W. Haverkort,1 and G. Sangiovanni2
1Max-Planck-Institut für Festkörperforschung, D-70506 Stuttgart, Germany
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We compare different methods for performing analytical continuation of spectral data from the imaginary
time or frequency axis to the real frequency axis for the optical conductivity !!"". We compare the maximum
entropy !MaxEnt", singular value decomposition !SVD", sampling, and Padé methods for analytical continu-
ation. We also study two direct methods for obtaining !!0". For the MaxEnt approach we focus on a recent
modification. The data are split up in batches, a separate MaxEnt calculation is done for each batch and the
results are averaged. For the problems studied here, we find that typically the SVD, sampling, and modified
MaxEnt methods give comparable accuracy while the Padé approximation is usually less reliable.

DOI: 10.1103/PhysRevB.82.165125 PACS number!s": 72.15.Eb, 02.70.Ss

I. INTRODUCTION

For strongly correlated systems analytical methods usu-
ally involve uncontrolled approximations. Therefore stochas-
tical methods such as quantum Monte Carlo !QMC",1 quan-
tum cluster methods,2 or continuous time methods3 are often
used. Apart from statistical errors, such methods can produce
quite accurate results but the results are obtained on the
imaginary axis. A major problem is then the analytically con-
tinuing of the results to the real axis, which is an ill-posed
problem. Small changes in the data on the imaginary axis can
lead to large changes on the real axis. Since the imaginary
axis data contain statistical noise, the analytical continuation
is very difficult.

There are different ways of regularizing this ill-posed
problem. One method combines the Bayesian theory with the
maximum entropy !MaxEnt" approach, which has been
found to be an efficient method for analytical continuation.4,5

Other regularizations are used in the singular value decom-
position !SVD" !Ref. 6 and 7" or stochastic regularization8

methods. An alternative is provided by making a Padé ap-
proximation to the data as a function of imaginary frequency
and then analytically continue the Padé expression to real
frequencies.9,10 A rather different approach is to use sampling
methods, where a large number of spectra are added,
weighted by the probability that they correspond to the
imaginary axis data. Such methods have been proposed for
T=0 !Ref. 11" and finite T.12 Finally, there are simple ap-
proximate methods for obtaining the optical conductivity at
zero frequency, !!"=0", directly from imaginary time or
frequency data.

Two-particle correlation functions, such as the dynamical
spin or charge correlation functions or the optical conductiv-
ity, provide important information about a variety of proper-
ties of the system. These two-particle functions are much
more difficult to calculate in QMC-type frameworks than the
one-particle Green’s function,13 and therefore much of the
interest has focused on the electron Green’s function. Here
we therefore instead treat a two-particle function, the optical
conductivity. While we here focus on transformation of
QMC data from imaginary space to real space, we note that
there are also QMC methods giving results directly for real
frequencies.14

In this paper we compare the Padé, SVD, sampling, and
MaxEnt methods for obtaining the optical conductivity from
imaginary axis data. We define a frequency-dependent opti-
cal conductivity, !!"", where " is a real frequency. This we
refer to as the “exact” result. This !!"" can easily be trans-
formed to the imaginary axis since this is a well-behaved
transformation that can be performed with a high accuracy.
We add statistical noise to the data, which then simulate the
output of a QMC calculation. The data are then transformed
back to the real axis, using the various methods for analytical
continuation. If the methods work well, we should essen-
tially recover the starting !!"", the exact result. This way we
can judge the accuracy of the different methods. It is impor-
tant to compare with a known exact result since analytical
continuation methods can give spurious structures due to
noise in the data. If a certain method A gives more structures
than another method B, it is hard to judge whether these
additional structures are real and method A is better or they
are due to noise and method B is better. This problem is
avoided if exact results are known. Here we construct the
exact !!"" using results for the two-dimensional !2D" Hub-
bard model as a guide for the general shape.

We find that the SVD, sampling, and MaxEnt methods
tend to give comparable accuracy while the Padé approxima-
tion often gives worse results. In particular, the Padé ap-
proximation often overestimates !!0". One of the direct
methods for estimating !!0" #based on Eq. !6" in Sec. II$
underestimates !!0", in particular, for a narrow Drude peak
while the other #extrapolating Eq. !5" in Sec. II to #=0$
typically gives better results.

In Sec. II we present some general results for the optical
conductivity. The different methods for analytical continua-
tion are presented in Sec. III and the results are show in Sec.
IV.

II. OPTICAL CONDUCTIVITY AND CURRENT-CURRENT
CORRELATION FUNCTION

The optical conductivity !!"" is obtained from the
current-current correlation function

PHYSICAL REVIEW B 82, 165125 !2010"
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optical conductivity ⇧(⌫n) =
2

⇡

Z 1

0

!2

⌫2n + !
2
�(!) d!

�(!) =

⇢
W1

1 + (!/�1)2
+

W2

1 + [(! � ✏)/�2]2
+

W2

1 + [(! + ✏)/�2]
2

�
1

1 + (!/�3)6

�1 = 0.3 or 0.6,�2 = 1.2,�3 = 4, ✏ = 3,W1 = 0.3,W2 = 0.2

vary noise on data



stochastic sampling



improve cutoff: ωcut = 8



improve cutoff: ωcut = 16



improve cutoff: ωcut = 32



cutoff dependence

same model, more accurate data



effect of discretization

variable transform

! ! z =
Z !

0
⇢(!0)d!0

[

]

exponential grid

Lorentzian grid

⇢(!) = � e��!)

⇢(!) =
�

⇡

1

!2 + �2



grid dependence



behavior where data is weak

for large ω stochastic sampling result 
behaves like density function ϱ(ω)



behavior where data is weak

for large ω stochastic sampling result 
behaves like density function ϱ(ω)



limit of no data

in absence of data stochastic sampling recovers grid density
default model



understand grid dependence?



grid resolution
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� (k)�k
x

k�1
e

�x/�

sample uniformly on fine grid

sum of k exponentially distributed variables

to simulate finer grid, reweight on coarser grid

U(x) = lim

�!1
Exp(�; x) = lim

�!1

1

�

e

�x/�

p
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(f
1

, f
2

, . . . , fn)

p
coarse

(f
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, f
2

, . . . , fn)
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�!1

Qn
i=1 f

k�1
i e�fi /�Qn

i=1 e
�fi /�

=
nY

i=1

f k�1i

p

P(x) =

Z
x

0
p(x 0) p(x � x 0) dx



Gamma distribution
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simulating grids of different resolution

exponential grid with 32 and 128 points

p
fine

(f
1

, f
2

, . . . , fn)

p
coarse

(f
1

, f
2

, . . . , fn)
/ lim
�!1

Qn
i=1 f

k�1
i e�fi /�Qn

i=1 e
�fi /�

=
nY

i=1

f k�1i



grid type
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simulating grids of different type

exponential and Lorentzian grid

p
fine

(f
1

, f
2

, . . . , fn)

p
other

(f
1

, f
2

, . . . , fn)
/ lim
�!1

Qn
i=1 f

ki�1
i e�fi /�Qn
i=1 e

�fi /�
=

nY

i=1

f ki�1i



general case

simulate grid of n1 points with density function ϱ1(x) 
on grid of n2 points with density function ϱ2(x)

reweight model (f1, f2, ..., fn2)  on second grid by

make result in absencence of data proportional to  ϱ1(x) 

separate grid from default model

p2(f1, f2, . . . , fn)

p1(f1, f2, . . . , fn)
=

nY

i=1

f
n1 ⇢1(x

i

n2 ⇢2(x
i

)
�1

i



recipe for discretization

default model: least informative function that reproduces lowest moment

estimate width of model from NNLS

ω ≥ 0:

otherwise:

µ =

Z
f (!) d! �2 =

Z
(! � µ)2f (!) d!

D(!) =
1

µ
e�!/mu

D(!) =
1p
2⇡ �

e�
(!�µ)2
2�2

grid: make numerical error in evaluating Kernel smaller than noise in data

ω ≥ 0:   Lorentzian at 0 with half-width µ
otherwise:   Lorentzian at µ with width σ



does NNLS depend on grid?
uniform grid, increasing density

peaks get narrower but retain their weight



does NNLS depend on grid?

different grids, same peaks (up to resolution)



results



reduce noise on data



second peak further out



summary
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|f̄ i /
Z

F
Df e�

1
2
hK̃f�g̃|K̃f�g̃i |f i

singular modes regularization by constraint

avrage spectrum method

blocked mode sampling

separate grid & default model


