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Quantum lattice models

Yoshida et al., Nature Communications 3, 860 (2012)

Volborthite, Cu3V2O7(OH)2·2H2O

UBC Physics

YBCO

K. Hermann/Fritz Haber Institute

Physics World 19, 33–37 (2006)
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Strongly-correlated electronic systems

When the Coulomb interaction 
between electrons plays an 
important role.!
!
Exotic phenomena:!

Mott insulating!
Superconductivity!
Superfluidity!
Spin liquid!

!   ! :!

e- e-

Superconductor

SuperfluidSkyrmion

Nature Physics 7, 673 (2011)
L. Balents, Nature 464, 199 (2010)
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Computational methods
• Quantum Monte Carlo based simulations
Large system sizes because of the polynomial scaling => Finite size scaling
Limited number of models 	

Sign problem (less severe with mean-field)

AF Heisenberg model on square lattice:

(Stefan Wessel)
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Computational methods
• High-temperature expansions (HTE)
Can be used for any model	

In the thermodynamic limit
Exponential problem => Can fail at low T even when correlations are 
short ranged	

Pade approximations (even down to T=0)

AF Heisenberg model on square lattice:
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Computational methods
• Exact diagonalization

Can be used for any model

Exponential problem (small systems) => Finite size effects

2016 18
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Computational methods

• Density-matrix renormalization group	


• Multi-scale entanglement renormalization ansatz	


• Projected entangled pair states	


• Methods for bosonic systems 
 
:  
:
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Cluster Expansions

==

M. Rigol, T. Bryant, and R. R. P. Singh, PRL 
97, 187202 (2006); PRE 75, 061118 (2007)

We express an extensive property of the model in 
terms of contributions from all clusters that can be 
embedded in the lattice:

P(   )P(   ) WP(   )WP(   )

Sykes et al.,  
J. Math. Phys. 7,  
1557 (1966)

+ 4WP(   ) + ... + 24WP( ) + 16WP()
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Cluster Expansions

X

S⇢
WP(   ) = P(   ) -     WP(s)

=

=
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Cluster Expansions

WP() = P()

X
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Disconnected clusters do not contribute:

Sykes et al.,  
J. Math. Phys. 7,  
1557 (1966)

X

S⇢
WP(     ) = P(     ) -     WP(s)

X

S⇢

WP(     ) = P(   )+ P( ) - WP(   ) - WP( )

-     WP(s) -     WP(s)
X

S⇢

= 0

Cluster Expansions
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M. Rigol, T. Bryant, and R. R. P. Singh, PRL 
97, 187202 (2006); PRE 75, 061118 (2007)



Cluster Expansions (TL)

Similarly, an expansion can be written in the 
thermodynamic limit (TL).	


But, we have to truncate the series.

1P( )/L = WP() + 2WP( ) + 6WP( ) + 4WP(  ) + ...
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Cluster Expansions (TL)

WP() = P()

Similarly, an expansion can be written in the 
thermodynamic limit (TL).	
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Cluster Expansions (TL)

WP() = P()

WP( ) = P( ) - 2WP() = P( ) - 2P()

Similarly, an expansion can be written in the 
thermodynamic limit (TL).	


But, we have to truncate the series.
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Cluster Expansions (TL)

WP() = P()

WP( ) = P( ) - 2WP() = P( ) - 2P()

Calculated using 	

Exact Diagonalization

Similarly, an expansion can be written in the 
thermodynamic limit (TL).	


But, we have to truncate the series.

1P( )/L = WP() + 2WP( ) + 6WP( ) + 4WP(  ) + ...
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Cluster Expansions (TL)

WP() = P()

WP( ) = P( ) - 2WP() = P( ) - 2P()

Calculated using 	

Exact Diagonalization

Similarly, an expansion can be written in the 
thermodynamic limit (TL).	


But, we have to truncate the series.

1P( )/L = WP() + 2WP( ) + 6WP( ) + 4WP(  ) + ...

P( )/L = -3P() + 2P( ) + ...1
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P (c) =
Tr P̂ e��Ĥc

Tr e��Ĥc

WP (c) = P (c) �
X

s⇢c

WP (s)

Number of embeddings 	

per site for cluster ‘c’

=
X

c

L(c)WP (c)

Numerical Linked-Cluster Expansion (NLCE)

M. Rigol, T. Bryant, and R. R. P. Singh, PRL 
97, 187202 (2006); PRE 75, 061118 (2007)

J. Oitmaa et al. “Series Expansion 
Methods for Strongly Interacting 
Lattice Models”

P (1)/L
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Generate all possible 
clusters	


!
Identify their symmetries 
and topologies	


!
Identify their sub-clusters

Site Expansion (Square Lattice)

Site expansion for 
the square lattice:

4

c

2

L(c)

2

3 2

4 4

5 4

6 2

7 4

11

8 4

9 8
FIG. 1: All clusters with up to three bonds and their lattice
constant for the square lattice.

properties, all clusters with the same topology make the
same contribution. For the square lattice, we have cal-
culated all possible clusters, and their lattice constants,
up to 14 bonds. The number of topological clusters, and
sum of L(c), when grouped by their number of bonds is
presented in Table. I.

A second choice is to identify clusters by sites. When
building the Hamiltonian for such expansion, one places
all possible bonds that connect any pair of sites in the
graph. This leads to a set of clusters and embeddings
that are called “strong embeddings” in the series expan-
sion literature [3], and is typically used for generating the

TABLE I: Number of topological clusters and sum of the lat-
tice constants for clusters with up to 14 bonds in the square
lattice. The cluster with 0 bonds is the one site graph.

No. of bonds No. of topological clusters
P

L(c)

0 1 1

1 1 2

2 1 6

3 2 22

4 4 88

5 6 372

6 14 1628

7 28 7312

8 68 33 466

9 156 155 446

10 399 730 534

11 1012 3 466 170

12 2732 16 576 874

13 7385 79 810 756

14 20 665 3 86 458 826

“low-temperature expansions” for Ising models. They
can be used to generate HTEs as well. However, differ-
ent clusters, with a given number of sites, will contribute
to HTE in different orders. Thus, the order to which
the HTE is correct will be determined by a subset of the
clusters with the same number of sites that happen to
contribute in the lowest order. On the other hand, hav-
ing lots of compact clusters, with multiple connectivity
between points, could mean that they can give better re-
sults beyond the radius of convergence of HTE. In Fig. 2
we show all clusters that have up to four sites, and their
lattice constant.
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FIG. 2: All clusters with up to four sites and their lattice
constant for the square lattice.

By comparing Figs. 1 and 2 one can see that the latter
never includes graphs such as c = 7 of the former one,
i.e., all squares are always closed in the site expansion,
hence the name “strong embeddings”. In addition, while
each site in the square lattice has four nearest-neighbor
sites, each bond has six nearest-neighbor bonds, which
implies that the number of bond clusters increases much
faster than the number of site clusters. In the latter case,
we have calculated all possible site graphs with up to 16
sites. Their number of topological clusters and sum of
lattice constants, when grouped by number of sites, is
shown in Table I.

Looking at Tables I and II one can see that for NLC
calculations of bond and site based expansions the main
limitation is the computing time (too many clusters) [38],
and not the memory as is usual for full diagonalization
studies of clusters with periodic boundary conditions.
Within NLC one can, however, change that order of lim-
itations considering more complicated (larger) building
units for the clusters. Hence, drastically reducing the
number of different clusters to consider [5].

A natural selection of a larger building unit in the
square lattice is, of course, the elementary plaquette or
square. In this case, a consistent NLC scheme requires

Si =
X

ci

L(ci)⇥WP (ci)

Pn =
nX

i=0

Si

(all the clusters that 
share a characteristic)

5

TABLE II: Number of topological clusters and sum of lattice
constants for clusters with up to 16 sites in the square lattice.

No. of sites No. of topological clusters
P

L(c)

1 1 1

2 1 2

3 1 6

4 3 19

5 4 63

6 10 216

7 19 760

8 51 2725

9 112 9910

10 300 36 446

11 746 135 268

12 2042 505 861

13 5450 1 903 890

14 15 197 7 204 874

15 42 192 27 394 666

16 119 561 104 592 937

that each bond belongs to only one square. This means
that we build our clusters out of every alternate square.
Different squares can only share sites, which are the ze-
roth order of the square expansion, and are properly sub-
tracted when calculating the weights in Eq. (2). In Fig.
3 we show all clusters, with up to three such squares,
required for a consistent square based NLC expansion.

The calculation of all possible clusters up to five
squares (up to 16 sites) is in this case very simple. In
Table III we show the results for the number of topolog-
ical clusters and sum of their lattice constants.

In the next subsections we apply the different NLC ex-
pansions detailed above to several well known spin mod-
els. All calculations were done on (3.2 GHz) Pentium IV
personal computers in times that span between 16 h for
the square based NLC expansion (up to 5 squares) and
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1

FIG. 3: All topological clusters with up to three squares and
their lattice constant for a square expansion.

TABLE III: Number of topological clusters and sum of the
lattice constants for clusters with up to five squares in the
square lattice. The cluster with zero squares is the single site
graph.

No. of squares No. of topological clusters
P

L(c)

0 1 1

1 1 1/2

2 1 1

3 2 3

4 5 19/2

5 11 63/2

60 h for the bond based NLC expansion (up to 13 bonds).

A. Heisenberg model

We now consider the antiferromagnetic Heisenberg
model (AFHM) on the square lattice. Its Hamiltonian
can be written as

H =
∑

⟨i,j⟩

Si · Sj , (12)

where we have chosen the coupling constant to be unity,
and the sum runs over nearest-neighbor (⟨i, j⟩) spins.

The AFHM on the square lattice is known to have an
ordered ground state with long-range antiferromagnetic
correlations [10]. This model can be efficiently simulated
using QMC techniques, such as stochastic series expan-
sions [11]. QMC methods enable one to study much
larger system sizes than the ones accessible with exact
diagonalization, although the classes of models that can
be addressed are limited by the sign problem [12, 13, 14].

We start by studying the temperature dependence of
the AFHM energy. In Fig. 4, we show a comparison of the
bare sums for the bond, site, and square NLC expansions,
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FIG. 4: (Color online) Energy as a function of temperature for
the antiferromagnetic Heisenberg model on the square lattice.
Bare NLC sums are compared with QMC results for a 100 ×

100 lattice.
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tracted when calculating the weights in Eq. (2). In Fig.
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Table III we show the results for the number of topolog-
ical clusters and sum of their lattice constants.

In the next subsections we apply the different NLC ex-
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Si · Sj , (12)

where we have chosen the coupling constant to be unity,
and the sum runs over nearest-neighbor (⟨i, j⟩) spins.

The AFHM on the square lattice is known to have an
ordered ground state with long-range antiferromagnetic
correlations [10]. This model can be efficiently simulated
using QMC techniques, such as stochastic series expan-
sions [11]. QMC methods enable one to study much
larger system sizes than the ones accessible with exact
diagonalization, although the classes of models that can
be addressed are limited by the sign problem [12, 13, 14].

We start by studying the temperature dependence of
the AFHM energy. In Fig. 4, we show a comparison of the
bare sums for the bond, site, and square NLC expansions,
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Kraken!
National Institute for Computational Sciences!
University of Tennessee

• Embarrassingly parallel (sending 
groups of clusters to each processor)  
 !

• We use MPI to assign every cluster to 
a different node.  

• We use OpenMP to parallelize loops 
using processors on each node.

B. Tang, EK and M. Rigol, Computer Physics Communications 184, 557 (2013)

Parallelization
5

TABLE II: Number of topological clusters and sum of lattice
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that each bond belongs to only one square. This means
that we build our clusters out of every alternate square.
Different squares can only share sites, which are the ze-
roth order of the square expansion, and are properly sub-
tracted when calculating the weights in Eq. (2). In Fig.
3 we show all clusters, with up to three such squares,
required for a consistent square based NLC expansion.

The calculation of all possible clusters up to five
squares (up to 16 sites) is in this case very simple. In
Table III we show the results for the number of topolog-
ical clusters and sum of their lattice constants.

In the next subsections we apply the different NLC ex-
pansions detailed above to several well known spin mod-
els. All calculations were done on (3.2 GHz) Pentium IV
personal computers in times that span between 16 h for
the square based NLC expansion (up to 5 squares) and
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where we have chosen the coupling constant to be unity,
and the sum runs over nearest-neighbor (⟨i, j⟩) spins.

The AFHM on the square lattice is known to have an
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larger system sizes than the ones accessible with exact
diagonalization, although the classes of models that can
be addressed are limited by the sign problem [12, 13, 14].

We start by studying the temperature dependence of
the AFHM energy. In Fig. 4, we show a comparison of the
bare sums for the bond, site, and square NLC expansions,

0.1 1 10
T

-0.8

-0.6

-0.4

-0.2

0

E

QMC 100×100
12 bonds
13 bonds

0.1 1 10
T

-0.8

-0.6

-0.4

-0.2

0

E

4 squares
5 squares

0.1 1 10
T

-0.8

-0.6

-0.4

-0.2

0

E
12 sites
13 sites

FIG. 4: (Color online) Energy as a function of temperature for
the antiferromagnetic Heisenberg model on the square lattice.
Bare NLC sums are compared with QMC results for a 100 ×

100 lattice.

5

TABLE II: Number of topological clusters and sum of lattice
constants for clusters with up to 16 sites in the square lattice.

No. of sites No. of topological clusters
P

L(c)

1 1 1

2 1 2

3 1 6

4 3 19

5 4 63

6 10 216

7 19 760

8 51 2725

9 112 9910

10 300 36 446

11 746 135 268

12 2042 505 861

13 5450 1 903 890

14 15 197 7 204 874

15 42 192 27 394 666

16 119 561 104 592 937

that each bond belongs to only one square. This means
that we build our clusters out of every alternate square.
Different squares can only share sites, which are the ze-
roth order of the square expansion, and are properly sub-
tracted when calculating the weights in Eq. (2). In Fig.
3 we show all clusters, with up to three such squares,
required for a consistent square based NLC expansion.

The calculation of all possible clusters up to five
squares (up to 16 sites) is in this case very simple. In
Table III we show the results for the number of topolog-
ical clusters and sum of their lattice constants.

In the next subsections we apply the different NLC ex-
pansions detailed above to several well known spin mod-
els. All calculations were done on (3.2 GHz) Pentium IV
personal computers in times that span between 16 h for
the square based NLC expansion (up to 5 squares) and

c

2

L(c)
11

3

4

5

1/2

1

2

1

FIG. 3: All topological clusters with up to three squares and
their lattice constant for a square expansion.

TABLE III: Number of topological clusters and sum of the
lattice constants for clusters with up to five squares in the
square lattice. The cluster with zero squares is the single site
graph.

No. of squares No. of topological clusters
P

L(c)

0 1 1

1 1 1/2

2 1 1

3 2 3

4 5 19/2

5 11 63/2

60 h for the bond based NLC expansion (up to 13 bonds).

A. Heisenberg model

We now consider the antiferromagnetic Heisenberg
model (AFHM) on the square lattice. Its Hamiltonian
can be written as

H =
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AF Heisenberg model on the square lattice
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Numerical Re-summation
where all Ci share a given characteristic 
(# of bonds, sites ...)

Bare sum: Pn =
nX

i=0

Si

Si =
X

ci

L(ci)⇥WP (ci)

We can take advantage of numerical re-summation algorithms such as, 
Euler and Wynn to perform the above sum:

2 4 6 8 10 12 14 16
Order #

En
er

gy
 a
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AF Heisenberg model
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AF Heisenberg model

Numerical Re-summation
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• Spin models (frustrated magnets)  

!

• Itinerant electron models  

!

• Entanglement!

!

• Thermalization of isolated quantum systems
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Figure 1 | Crystal structure of Rb2Cu3SnF12. a, A crystal structure in the ab plane shows the connectivity of the Cu2+ ions (red) forming a deformed
kagome lattice. b, Dimers (blue bonds) form the pinwheel VBS state. The exchange interactions are labelled as J1 > J2 > J3 > J4.
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Figure 2 | Energy–momentum contour maps. a,b, Intensity contour maps were measured at T= 3K around (2, 0, 0) and (2, 2, 0) along two
high-symmetry directions, along kx (a) and along ky (b). c, Triplet dispersions were measured along the path shown in the inset. The error bars of the
experimental data correspond to three times the statistical error obtained from the fitting (see the Methods section). The solid lines represent the best fits
to the dimer series expansion described in the text. The error bars of the calculated curves reflect the differences of various Padé approximations. d, An
energy scan at Qm = (0, 2, 0) (⇧-point) and T= 5K shows two spin gaps at 2.35(7) and 7.3(3) meV. The error bars correspond to the counting-statistical
error. e, The calculated dynamic structure factor integrated over triplet excitations shows a high scattering intensity around (2, 0, 0), (0, 2, 0) and (2, 2, 0),
consistent with the experimental data.

different from the VBS state theoretically proposed for the ideal
kagome lattice, because it is stabilized by the lattice distortion
and the long-range dimer–dimer correlations do not break the
translational symmetry of the lattice. A theoretical study of the
J4-depleted kagome lattice26, which is defined by J1 = J2 = J3 ⇤ J
and J4 ⇤ �J , shows that the most energetically favoured VBS
state proposed for the ideal kagome lattice, which corresponds to
� = 1, is destabilized against this pinwheel state even at � ⌅ 0.97,
highlighting the importance of geometrical frustration, which leads
to the diversity and closeness of exotic phases in the quantum
kagome lattice.

To verify the pinwheel VBS state, we carried out inelastic neutron
scattering on a single-crystal sample (see the Methods section). The
scattering intensity can be described by the following equation:

I (Q,h̄⌅)=
�⇥ r0

2

⇥2
f (Q)2S(h̄⌅,q;Qm) (2)

where (⇥ r0/2)2 = 72.65 ⇥ 10�3 b/µB
2, f (Q) is a magnetic form

factor for Cu2+, S(h̄⌅,q;Qm) is a dynamical structure factor
and Q = Qm + q. An energy scan at the Brillouin zone centre
Qm = (0,2,0) (Fig. 2d) clearly shows two singlet-to-triplet gaps.
The convoluted fit with the resolution function yields the gap

866 NATURE PHYSICS | VOL 6 | NOVEMBER 2010 | www.nature.com/naturephysics
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Square Lattice Hubbard Model
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Double Occupancy

context of Pomeranchuk cooling (without taking the low-T
AF phase into account) [10,11,28]. In contrast, the en-
hancement seen in Fig. 1 is a strong-coupling effect close
to half filling as illustrated in Fig. 2: In a fully developed
AF state (a), a central spin-up atom (central black arrow)
can hop virtually to all Z ¼ 6 next neighbors, lowering its
energy (in 2nd order) to EAF ¼ "Zt2=U. In contrast, half
of the neighboring sites are (on average) forbidden by the
Pauli principle in a paramagnetic state (b), thus Ep ¼
"Zt2=ð2UÞ. By D ¼ dE=dU (valid at T ¼ 0), the argu-

ment implies DAF=Dp !!!!U!1
2. Thus, nearest-neighbor AF

correlations can double D compared to the paramagnet at
large U and low T. Ferromagnetic correlations, on the
other hand, would suppress D.

The DMFT data shown in Fig. 2(c) for a half-filled
homogeneous system confirm this (dimension indepen-
dent) picture: At U ¼ 18t (dashed line), the double occu-
pancy increases strongly below TN % 0:33t (arrow); the
relative enhancement at T % 0:2t exceeds 70%, as best
seen in the scaled view of Fig. 2(d). In contrast, no tem-
perature dependence is visible in the paramagnetic phase,
which may be continued artificially (thin lines) down to
T ¼ 0. Although the relative AF enhancement of D is
smaller at U ¼ 12t (solid lines), both the larger absolute
scale and the larger TN % 0:46 make this parameter more
favorable for experiment, whereas thermal fluctuations are
still small at T % TN . The strong-coupling effect vanishes
rapidly for smaller U; at U ¼ 9t (dash-dotted line), the AF
correlations even lead to a reduction of D.

For quantitative predictions, let us now return to
RDMFT results for inhomogeneous systems. As seen in
Fig. 3(a), the order parameter (thick lines) is nearly con-
stant in the AF core at T ¼ 0:25t, with mmax

stag * 0:8 for

U=t ¼ 9, 10, 12 and mmax
stag % 0:7 for U ¼ 18t, before it

slowly decays to zero. The width of the transition region (3
to 4 lattice spacings) must be attributed to proximity effects
[17] since the phase boundaries are sharp within LDA (thin
lines). The double occupancies [thick lines in panel (e)]
show strong enhancement throughout the AF core in com-
parison with (enforced) paramagnetic solutions (thin lines)
for U=t ¼ 12, 18; for U & 10t, the latter yield even larger
D in the center. As seen in Fig. 3(c), the relative enhance-
ment of D is almost equal for U ¼ 12t and U ¼ 18t at this
fixed temperature [cf. Fig. 2(c)]; the strong deviations
between RDMFT and LDA solutions indicate significant
proximity effects for all U. At larger T ¼ 0:42t, the AF
order is generally weakened (and disappears for U ¼ 18t)
as shown in Fig. 3(b); the transitions also become
smoother, especially towards the shrinking core. Both
effects result in a smaller enhancement of D for U ¼ 12t
[Fig. 3(d) and 3(f)].
Let us, finally, discuss whether the double occupancy

retains its clear signals for AF correlations in averages over
large parts of the cloud [3]. This is indeed the case, as
shown in Fig. 4 for U ¼ 12t: although the total fraction
Dfrac ¼ 2

P
iDi=N of atoms on doubly occupied sites

(circles) is temperature dependent also at elevated tem-
peratures, due to the impact of the metallic shell, the strong
increase in the AF phase at ðT=tÞ2 & 0:2 can clearly be

(b)(a)

 0

 0.02

 0.04

 0.06

 0.08

 0  0.2  0.4  0.6  0.8  1

D
(T

)

T/t

 1

 1.2

 1.4

 1.6

 1.8

 0  0.2  0.4  0.6  0.8  1

D
(T

) 
/ D

(T
N

)

T/TN

(c)

(d)U = 18
U = 12
U = 10
U =  9

FIG. 2 (color online). Illustration of mechanism for enhanced
double occupancy (at strong coupling) in the AF state
(a) compared to a paramagnetic state (b); see text. (c) DMFT-
QMC estimates of double occupancy at half filling versus T for
various interactions U; arrows indicate corresponding Néel
temperatures. Thin lines: results for metastable paramagnetic
phase. (d) same data scaled to values of critical point.
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• Double occupancy decreases by 
increasing the interaction.	

!

• For large interactions, it rises at low 
temperatures.	


!
• The rise can be explained by enhanced 

virtual hoppings to allowed neighboring 
sites due to AF ordering.
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Double Occupancy

context of Pomeranchuk cooling (without taking the low-T
AF phase into account) [10,11,28]. In contrast, the en-
hancement seen in Fig. 1 is a strong-coupling effect close
to half filling as illustrated in Fig. 2: In a fully developed
AF state (a), a central spin-up atom (central black arrow)
can hop virtually to all Z ¼ 6 next neighbors, lowering its
energy (in 2nd order) to EAF ¼ "Zt2=U. In contrast, half
of the neighboring sites are (on average) forbidden by the
Pauli principle in a paramagnetic state (b), thus Ep ¼
"Zt2=ð2UÞ. By D ¼ dE=dU (valid at T ¼ 0), the argu-

ment implies DAF=Dp !!!!U!1
2. Thus, nearest-neighbor AF

correlations can double D compared to the paramagnet at
large U and low T. Ferromagnetic correlations, on the
other hand, would suppress D.

The DMFT data shown in Fig. 2(c) for a half-filled
homogeneous system confirm this (dimension indepen-
dent) picture: At U ¼ 18t (dashed line), the double occu-
pancy increases strongly below TN % 0:33t (arrow); the
relative enhancement at T % 0:2t exceeds 70%, as best
seen in the scaled view of Fig. 2(d). In contrast, no tem-
perature dependence is visible in the paramagnetic phase,
which may be continued artificially (thin lines) down to
T ¼ 0. Although the relative AF enhancement of D is
smaller at U ¼ 12t (solid lines), both the larger absolute
scale and the larger TN % 0:46 make this parameter more
favorable for experiment, whereas thermal fluctuations are
still small at T % TN . The strong-coupling effect vanishes
rapidly for smaller U; at U ¼ 9t (dash-dotted line), the AF
correlations even lead to a reduction of D.

For quantitative predictions, let us now return to
RDMFT results for inhomogeneous systems. As seen in
Fig. 3(a), the order parameter (thick lines) is nearly con-
stant in the AF core at T ¼ 0:25t, with mmax

stag * 0:8 for

U=t ¼ 9, 10, 12 and mmax
stag % 0:7 for U ¼ 18t, before it

slowly decays to zero. The width of the transition region (3
to 4 lattice spacings) must be attributed to proximity effects
[17] since the phase boundaries are sharp within LDA (thin
lines). The double occupancies [thick lines in panel (e)]
show strong enhancement throughout the AF core in com-
parison with (enforced) paramagnetic solutions (thin lines)
for U=t ¼ 12, 18; for U & 10t, the latter yield even larger
D in the center. As seen in Fig. 3(c), the relative enhance-
ment of D is almost equal for U ¼ 12t and U ¼ 18t at this
fixed temperature [cf. Fig. 2(c)]; the strong deviations
between RDMFT and LDA solutions indicate significant
proximity effects for all U. At larger T ¼ 0:42t, the AF
order is generally weakened (and disappears for U ¼ 18t)
as shown in Fig. 3(b); the transitions also become
smoother, especially towards the shrinking core. Both
effects result in a smaller enhancement of D for U ¼ 12t
[Fig. 3(d) and 3(f)].
Let us, finally, discuss whether the double occupancy

retains its clear signals for AF correlations in averages over
large parts of the cloud [3]. This is indeed the case, as
shown in Fig. 4 for U ¼ 12t: although the total fraction
Dfrac ¼ 2

P
iDi=N of atoms on doubly occupied sites

(circles) is temperature dependent also at elevated tem-
peratures, due to the impact of the metallic shell, the strong
increase in the AF phase at ðT=tÞ2 & 0:2 can clearly be
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Entropy

2

havior of some of those quantities in a harmonic trap.

We should add that our numerical results for a grid
blabla is available at...

II. THE MODEL AND THE NUMERICAL
APPROACH

We study the 2D Hubbard Hamiltonian:

Ĥ = �t
X

⇤i,j⌅

(ĉ†i ĉj +H.c.) + U
X

i

n̂i�n̂i⇥, (1)

where t is the nearest-neighbor hopping amplitude, which
sets the energy scale throughout this paper, i.e., we take
t = 1 and we will also set ~ = 1 and kB = 1. ĉ†i� (ĉi�)
creates (annihilates) a particle with spin � on site i, U
is the strength of the onsite repulsive interaction, and
n̂i� = ĉ†i� ĉi� is the number operator. We employ the nu-
merical linked-cluster expansions (NLCEs)14–16 to study
the Hubbard model on the square lattice. NLCEs are
a method by which extensive properties of the system
in the thermodynamic limit are expressed as a series in
terms of the contributions from all the clusters, up to a
certain size, which can be embedded in the lattice. It in-
herits the linked-cluster basis of the high temperature ex-
pansions (HTEs), however, unlike HTEs, each cluster is
solved exactly using full diagonalization algorithms. As
a result, not only are NLCEs free of statistical and/or
systematic errors (such as finite size e�ects), but they
also converge to lower temperatures than HTEs. How-
ever, due to the finite numbers of terms that can be con-
sidered in the expansion, NLCEs have a finite region of
convergence in temperature for systems with long range
correlations. What that means is that there is always a
temperature below which the series do not converge. The
lowest temperature of convergence is usually considerably
lower than that of the HTEs and can be further decreased
by using various sequence extrapolation methods.16

We work in the grand canonical ensemble. In order
to be able to study properties of the model at a con-
stant density, for di�erent temperatures and interaction
strengths, we compute all quantities for a very dense grid
of chemical potentials.16 The NLCE calculations are car-
ried out up to the ninth order in the site expansion (nine
sites), and we use Wynn and Euler extrapolation algo-
rithms to extend the region of convergence of the direct
NLCE sums.16

Since only the nearest neighbor hopping is considered,
the Hamiltonian (1) can be written in a particle-hole sym-
metric form, for which most of the properties are the
same in the particle-doped and hole-doped cases. This is
the case for all the properties presented here, except the
double occupancy, which can be easily translated from
one case to the other. Hence, away from half-filling, we
only show results for the hole-doped system.

III. RESULTS

A. Equation of state

The equation of state for the Hubbard model provides
important information about correlation e�ects as the
strength of the on-site interaction is increased and is
of much current interest for experiments with ultracold
gases on optical lattices. In Fig. 1, we depict the equation
of state at three di�erent temperatures, T = 0.82, 0.55,
and 0.25 for the weak, intermediate, and strong coupling
regimes with U = 4, 8 and 12, respectively. For the last
two values of U [Figs. 1(b) and 1(c)], one can see the
emergence of an incompressible region around µ = U/2,
a clear signature of the Mott gap opening in the density
of states at low temperatures. The size of the incom-
pressible region, and hence the gap value, can be seen to
increase as U is increased.
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FIG. 1. Electron density vs chemical potential for (a) U = 4,
b) U = 8, and (c) U = 12 and at three di�erent temperatures.
NLCE converges at these temperatures for all the values of
chemical potential presented here. So, only the last order of
the series is shown after using Wynn extrapolation with three
cycles of improvement.17 The density does not converge at
T = 0.25 for most values of µ in (a) and is not shown.

NLCEs for the repulsive Hubbard model have a higher
convergence temperature for smaller values of the inter-
action strength. As a result, we do not have access to
the T = 0.25 data for the entire interval of the chemical
potential shown in Fig. 1(a) for U = 4, where there is no
sign of a Mott gap at temperatures as low as T = 0.55.
So, for all the quantities discussed here, and at the acces-
sible temperatures, the system with U = 4 is compress-
ible at all densities.

B. Entropy

In general, within DQMC and DCA, entropy calcula-
tions of the Hubbard model involve numerical derivatives
and/or integration by parts,18 which can introduce sys-
tematic errors. Within NLCEs, one can compute the en-
tropy directly by using its definition in the grand canon-
ical ensemble:

S = ln(Z) +
⇥Ĥ⇤ � µ⇥n̂⇤

T
(2)

where Z is the partition function, and S generally con-
verges to lower temperatures than the specific heat.

Thermodynamic properties
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Complementarity to DQMC
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Cold atoms on optical lattices
ENLARGING AND COOLING THE NÉEL STATE IN AN . . . PHYSICAL REVIEW A 86, 023606 (2012)

FIG. 1. (Color online) Phases and potentials in the trap. (a)
Schematic representation of the distribution of phases. The three
lattice beams run along the x, y, and z axes. They meet and form
a simple-cubic lattice at the center. The antiferromagnetic (AF)
Mott-insulating phase with filling of one atom per lattice site is
found here. Surrounding the AF phase in the region where all three
lattice beams are non-negligible is a paramagnetic Fermi gas phase
RI (“Reservoir I”). The regions where only one of three lattice beams
has significant intensity are denoted RII. The region where all lattice
beams are negligible is denoted by RIII. Atoms can be contained in
RIII by an additional confining Vext(r). (b) Total potential at z = 0:
V (x,y,z = 0). Compensating beams, of optical potential opposite to
the lattice beams, run along the x, y, and z axes to maximize the size
of the AF region.

i.e., in the region where all lattice and compensating beams
are non-negligible; RII represents the six reservoirs in the
regions where the beam intensities are appreciable in only
one direction, corresponding to taking one of coordinates |x|,
|y|, or |z| large compared to the beam waists while leaving the
other two small enough to remain within the beam; and RIII is
the reservoir outside of all of the beams.

The parameters in the potential allow for significant
freedom in tailoring the distribution of phases in the trap.
As one goes along one of the diagonal directions away from
the origin, the amplitude of the lattice decays according to
Eq. (6), which sets the local effective amplitude V

diag
0L of the

simple-cubic optical lattice. There is no need to specify the
waist of the lattice beam within the LDA, as this simply sets
the linear size of the different phases in the trap. The parameters
that must be chosen are the ratio of beam waists α and the ratio
of the intensities of the lattice and compensating beams β, as
defined in Eq. (9).

The chemical potential µ can be directly related to the
density in the region RIII where all laser potentials, except
possibly for Vext(r), are zero (see Fig. 1). If µ ! Vext(r) then
RIII is empty. For µ " Vext(r) the Hartree approximation gives
the local density in RIII:

[µ − Vext(r)]/ER = 1
π2

(3π2nd3)2/3 + 8
π

as

d
nd3. (10)

IV. OPTIMIZING THE PARAMETERS

The parameters of the system should be chosen to maximize
the size of the phase of interest and create optimal conditions
for the realization of the phase. The lattice depth which
maximizes the Hartree estimate of the effective AF exchange
JH , thus giving the fastest equilibration time scales and
maximum Néel temperature, for a given interaction strength
as , was estimated in previous work [15] and is plotted in
Fig. 2 as a function of lattice depth for the interaction strengths
considered in this work: as = 0.1d and as = 0.06d. We also
found that the lattice depth which maximizes the entropy
of the Néel state, in a calculation that neglects terms in the
Hamiltonian beyond the Hubbard model [16], is close to this
optimal AF exchange lattice depth. Therefore, the center of
the trap should be at a lattice depth close to this optimal lattice
depth. The AF phase should also occupy as large a volume as
possible in the trap.

Figure 3 schematically depicts the phases encountered in
going along a diagonal from r = 0, where the lattice is deepest,
to the edge of the trap, where the lattice depth goes to zero.
Figures 3(a) and 3(b) show the cases of lattice potentials with
no compensation, while Figs. 3(c) and 3(d) show two cases

as d 0.1

as d 0.06

0 2 4 6 8
V 0 L

diag
E R

0

0.01

0.02

0.03

H E R

FIG. 2. (Color online) Plot of the Hartree estimate of the effective
AF exchange JH in a simple-cubic optical lattice with lattice depth
V

diag
0L , for interaction strengths as = 0.1d (blue) and as = 0.06d (red),

where d is the lattice spacing. JH is twice the difference in energy
per bond between the AF and ferromagnetic states, obtained in the
Hartree approximation (see Ref. [15] for details). A large JH leads
to a large ordering temperature and fast time scales for equilibration
and entropy transport. The highlighted points (orange) correspond
to the maximum of JH as a function of V0 for a given interaction
strength as/d . Employing the local-density approximation, the trap
shown in Fig. 1 is simple-cubic along the diagonal directions with
lattice depth V

diag
0L decreasing as one leaves the trap center. Thus by

arranging to have V
diag

0L be close to the value that maximizes JH over
a large portion of the trap, the conditions for realizing the Néel phase
are optimized.
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Optical lattice experiments

Rice group, to appear in Nature

AF structure factor 
DQMC + NLCE
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Optical lattice experiments

Estimating the 
temperature to 
be ~1.4TN by 
comparing to 
theory (DQMC
+NLCE)

Rice group, to appear in Nature
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Summary

The Numerical Linked-Cluster Expansion provides a 
powerful tool for studying quantum lattice models in the 
thermodynamic limit.	


!

It can be used to study thermodynamic properties of the 
Hubbard models -- especially useful in the strong-coupling 
regime (complementary to QMC methods). 

Thank you!
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