Numerical linked-cluster expansion approach for strongly-correlated electronic systems

Ehsan Khatami

San Jose State University

Mardi Gras Conference February 13, 2015 Baton Rouge, LA

Ehsan Khatami, SJSU

Outline

Introduction

- Strongly-correlated electronic systems
- Common methods for quantum lattice models
- The Numerical Linked-Cluster Expansion
- Results for the Fermi-Hubbard model
 - Thermodynamic properties
 - Superconducting correlations

Quantum lattice models

UBC Physics

Yoshida et al.. Nature Communications 3. 860 (2012) Mardi Gras Conference, 2015

Ehsan Khatami, SJSU

Strongly-correlated electronic systems

- When the Coulomb interaction between electrons plays an important role.
- Exotic phenomena:
 - Mott insulating
 - Superconductivity
 - Superfluidity
 - Spin liquid

L. Balents, Nature 464, 199 (2010)

Superconductor

Nature Physics 7, 673 (2011)

Superfluid

Mardi Gras Conference, 2015

Ehsan Khatami, SJSU

Quantum Monte Carlo based simulations
 Large system sizes because of the polynomial scaling => Finite size scaling
 Limited number of models
 Sign problem (less severe with mean-field)

AF Heisenberg model on square lattice:

(Stefan Wessel)

 High-temperature expansions (HTE)
 Can be used for any model In the thermodynamic limit
 Exponential problem => Can fail at low T even when correlations are short ranged
 Pade approximations (even down to T=0)

AF Heisenberg model on square lattice:

$$H = \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

- Exact diagonalization
- Can be used for any model

Exponential problem (small systems) => Finite size effects

- Density-matrix renormalization group
- Multi-scale entanglement renormalization ansatz
- Projected entangled pair states
- Methods for bosonic systems

Outline

Introduction

- Strongly-correlated electronic systems
- Common methods for quantum lattice models

The Numerical Linked-Cluster Expansion

- Results for the Fermi-Hubbard model
 - Thermodynamic properties
 - Superconducting correlations

We express an extensive property of the model in terms of contributions from all clusters that can be embedded in the lattice:

$$P(\square) = W_P(\square) + 4W_P(\square) + \dots + 24W_P(\square) + 16W_P(\square)$$

Sykes et al., J. Math. Phys. **7**, 1557 (1966)

M. Rigol, T. Bryant, and R. R. P. Singh, PRL 97, 187202 (2006); PRE 75, 061118 (2007)

We express an extensive property of the model in terms of contributions from all clusters that can be embedded in the lattice:

$$P(\bigoplus) = W_P(\bigoplus) + 4W_P(\bigoplus) + \dots + 24W_P(\bullet) + 16W_P(\bullet)$$
$$W_P(\bigoplus) = P(\bigoplus) - 4W_P(\bigoplus) - \dots - 24W_P(\bullet) - 16W_P(\bullet)$$

Sykes et al., J. Math. Phys. **7**, 1557 (1966)

M. Rigol, T. Bryant, and R. R. P. Singh, PRL 97, 187202 (2006); PRE 75, 061118 (2007)

We express an extensive property of the model in terms of contributions from all clusters that can be embedded in the lattice:

$$P(\bigoplus) = W_{P}(\bigoplus) + 4W_{P}(\bigoplus) + \dots + 24W_{P}(\bullet) + 16W_{P}(\bullet)$$

$$W_{P}(\bigoplus) = P(\bigoplus) - 4W_{P}(\bigoplus) - \dots - 24W_{P}(\bullet) - 16W_{P}(\bullet)$$

$$W_{P}(\bigoplus) = P(\bigoplus) - 4W_{P}(\bigoplus) - \dots - 24W_{P}(\bullet) - 16W_{P}(\bullet)$$
Sykes et al.,
J. Math. Phys. 7,
1557 (1966)

M. Rigol, T. Bryant, and R. R. P. Singh, PRL 97, 187202 (2006); PRE 75, 061118 (2007)

Ehsan Khatami, SJSU

Cluster Expansions

We express an extensive property of the model in terms of contributions from all clusters that can be embedded in the lattice:

$$P(\bigoplus) = W_{P}(\bigoplus) + 4W_{P}(\bigoplus) + \dots + 24W_{P}(\square) + 16W_{P}(\square)$$

$$W_{P}(\bigoplus) = P(\bigoplus) - 4W_{P}(\bigoplus) - \dots - 24W_{P}(\square) - 16W_{P}(\square)$$

$$W_{P}(\bigoplus) = P(\bigoplus) - 16W_{P}(\square)$$
Sykes et al.,
J. Math. Phys. 7,
1557 (1966)
M. Rigol, T. Bryant, and R. R. P. Singh, PRL
97, 187202 (2006); PRE 75, 061118 (2007)
W_{P}(\square) = P(\square)

Disconnected clusters do not contribute:

= 0

 $W_P(++++) = P(++++) + P(++) - W_P(++++) - W_P(++++)$

Sykes et al.,

 $-\sum W_P(s) - \sum W_P(s)$ $S \subset \downarrow \downarrow \downarrow \downarrow$ $S \subset \leftarrow$

J. Math. Phys. 7, 1557 (1966)

M. Rigol, T. Bryant, and R. R. P. Singh, PRL 97, 187202 (2006); PRE 75, 061118 (2007)

Ehsan Khatami, SJSU

Similarly, an expansion can be written in the thermodynamic limit (TL).

But, we have to truncate the series.

 $P(\infty)/L = W_P(\bullet) + 2W_P(\bullet) + 6W_P(\bullet) + 4W_P(\bullet) + \cdots$

Similarly, an expansion can be written in the thermodynamic limit (TL).

But, we have to truncate the series.

 $P(\infty)/L = W_P(\bullet) + 2W_P(\bullet \bullet) + 6W_P(\bullet \bullet) + 4W_P(\bullet \bullet) + \bullet \bullet$

 $W_P(\bullet) = P(\bullet)$

Similarly, an expansion can be written in the thermodynamic limit (TL).

But, we have to truncate the series.

 $P(\infty)/L = W_P(\bullet) + 2W_P(\bullet \bullet) + 6W_P(\bullet \bullet) + 4W_P(\bullet \bullet) + \bullet \bullet$

 $W_P(\bullet) = P(\bullet)$

 $W_P(\bullet \bullet) = P(\bullet \bullet) - 2W_P(\bullet) = P(\bullet \bullet) - 2P(\bullet)$

Ehsan Khatami, SJSU

Similarly, an expansion can be written in the thermodynamic limit (TL).

But, we have to truncate the series.

 $P(\infty)/L = W_P(\bullet) + 2W_P(\bullet \bullet) + 6W_P(\bullet \bullet) + 4W_P(\bullet \bullet) + \bullet \bullet$

 $W_P(\bullet) = P(\bullet)$

Similarly, an expansion can be written in the thermodynamic limit (TL).

But, we have to truncate the series.

 $P(\infty)/L = W_P(\bullet) + 2W_P(\bullet \bullet) + 6W_P(\bullet \bullet) + 4W_P(\bullet \bullet) + \bullet \bullet$

 $W_P(\bullet) = P(\bullet)$

Numerical Linked-Cluster Expansion (NLCE)

J. Oitmaa et al. "Series Expansion Methods for Strongly Interacting Lattice Models"

M. Rigol, T. Bryant, and R. R. P. Singh, PRL 97, 187202 (2006); PRE 75, 061118 (2007)

$$\begin{cases} P(c) = \frac{\operatorname{Tr} \hat{P}e^{-\beta \hat{H}_{c}}}{\operatorname{Tr} e^{-\beta \hat{H}_{c}}} \\ W_{P}(c) = P(c) - \sum_{s \in c} W_{P}(s) \\ P(\infty)/L = \sum_{c} L(c)W_{P}(c) \\ & \checkmark \end{cases} \\ \end{cases}$$
Number of embeddings per site for cluster 'c'

Ehsan Khatami, SJSU

4 4 ⊠ G ∉nerate all possible 6 clusters	Site expansion for the square lattice:		# of sites 1	# of clusters 1	
7.4		С	L(c)	2	1
Identify their symmetries	•	1	1	3	1
⁸ and topologies				4	3
	•-•	2	2	5	4
9 8		3	2	6	10
Identify their sub-clusters	•	5	Ζ.	7	19
	••	4	4	8	51
	•			9	112
$S_i = \sum L(c_i) \times W_P(c_i)$	• • •	5	4	10	300
		6	2	11	746
c_i	• •	Ū	2	12	2042
(all the clusters that	• -•	7	1	13	5450
share a characteristic)	• •	0		14	15 197
	•-•	8	4	15	42 192
$P_n = \sum_{i=1}^{n} S_i$	•••	9	8	16	119 561

Site Expansion (Square Lattice)

Ehsan Khatami, SJSU

i=0

2

2

2

3

Parallelization

- Embarrassingly parallel (sending groups of clusters to each processor)
- We use <u>MPI</u> to assign every cluster to a different node.
- We use <u>OpenMP</u> to parallelize loops using processors on each node.
 - B. Tang, EK and M. Rigol, Computer Physics Communications 184, 557 (2013)

Kraken National Institute for Computational Sciences University of Tennessee Ehsan Kh

		# of
#	of sites	cluster
	1	1
	2	1
	3	1
	4	3
	5	4
	6	10
	7	19
	8	51
	9	112
	10	300
	11	746
	12	2042
	13	5450
	14	15197
	15	42 192
	16	119561

Ehsan Khatami, SJSU Mardi Gras Conference, 2015

AF Heisenberg model on the square lattice

Numerical Re-summation

$$S_i = \sum_{c_i} L(c_i) \times W_P(c_i)$$

Bare sum: $P_n = \sum_{i=0}^{n} S_i$

where all C_i share a given characteristic (# of bonds, sites ...)

$$P(\infty) = \lim_{n \to \infty} P_n$$

We can take advantage of numerical re-summation algorithms such as, Euler and Wynn to perform the above sum:

Numerical Re-summation

AF Heisenberg model

Numerical Re-summation

Numerical linked-cluster expansions

Spin models (frustrated magnets)

M. Rigol, T. Bryant, R. R. P. Singh, PRL **97**, 187202 (2006); **98**, 207204 (2007). EK and M. Rigol, PRB **83**, 134431 (2011); **85**, 064401 (2012) :

Itinerant electron models

EK and M. Rigol, PRA **84**, 053611 (2011); **86**, 023633 (2012) B. Tang, T. Paiva, EK, M. Rigol, PRL **109**, 205301 (2012); PRB **88**, 125127 (2013)

Entanglement

A. Kallin, K. Hyatt, R. Singh, R. Melko, PRL 110, 135702 (2013)
A. Kallin, E. M. Stoudenmire, P. Fendley, R. R. P. Singh, R. G. Melko,
J Stat. Mech. 2014, 06009 (2014) ...

• Thermalization of isolated quantum systems

M. Rigol, PRL **112**, 170601 (2014); PRE **90**, 031301(R) (2014) ... Ehsan Khatami, SJSU

Square Lattice Hubbard Model

The Fermi-Hubbard model:

$$H = t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

$$\downarrow$$

Cinetic energy

Kinetic energy (nearest neighbor hopping)

Potential energy (Coulomb interaction)

t = 1 (unit of energy)

Mott insulator at half filling

Double Occupancy

- Double occupancy decreases by increasing the interaction.
- For large interactions, it rises at low temperatures.
- The rise can be explained by enhanced virtual hoppings to allowed neighboring sites due to AF ordering.

Gorelik et. al., PRL 105, 065301 (2010)

Double Occupancy

- Double occupancy decreases by increasing the interaction.
- For large interactions, it rises at low temperatures.
- The rise can be explained by enhanced virtual hoppings to allowed neighboring sites due to AF ordering.

Gorelik et. al., PRL 105, 065301 (2010)

Thermodynamic properties

$$S = \ln(Z) + \frac{\langle \hat{H} \rangle - \mu \langle \hat{n} \rangle}{T}$$

$$C_v = \left(\frac{\partial \langle \hat{H} \rangle}{\partial T}\right)_n = \frac{1}{T^2} \left[\langle \Delta \hat{H}^2 \rangle - \frac{(\langle \hat{H}\hat{n} \rangle - \langle \hat{H} \rangle \langle \hat{n} \rangle)^2}{\langle \Delta \hat{n}^2 \rangle} \right]$$

EK and M. Rigol, PRA 84, 053611 (2011), ibid 86, 023633 (2012)

Ehsan Khatami, SJSU

Complementarity to DQMC

Ehsan Khatami, SJSU

Cold atoms on optical lattices

Ehsan Khatami, SJSU

Rice group

Optical lattice experiments

AF structure factor DQMC + NLCE

Rice group, to appear in Nature

Ehsan Khatami, SJSU

Optical lattice experiments

Estimating the temperature to be $\sim 1.4T_N$ by comparing to theory (DQMC +NLCE)

Rice group, to appear in Nature

Ehsan Khatami, SJSU

Acknowledgements

Richard T. Scalettar Rajiv R. P. Singh (UC Davis)

Marcos Rigol Baoming Tang (Penn State)

Thereza Paiva (U of Rio)

Randy Hulet and his Group (Rice)

Summary

* The Numerical Linked-Cluster Expansion provides a powerful tool for studying quantum lattice models in the thermodynamic limit.

It can be used to study thermodynamic properties of the Hubbard models -- especially useful in the strong-coupling regime (complementary to QMC methods).

Thank you!