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ntroduction

Microscopie dynamics of large systems

tnstantaneous microscopic d yna wics of Large systems

B Macroscopic objects - aggregate of microscopic elements

B Superposition principle - large system of coupled Hamilton
equations determining the phase-space trajectory

n lmpossLbLLL’cg to determine complete nitial conditions

B (nability to determine the actual trajectory of Large microscopic
states

B Macroscopic state: phase space fluid with Liouville equation

B Entropy as a measure of macroscopic uncertainty

How do we determine macroscopic properties
without solving Llouville equation?

LSU
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ntroduction

Macroscop'w time scales

Large time scales - macroscopie statiowaritg

B Macroscopic measurements —- on large time scales
(relaxation time)

m Time fluctuations on microscopic time scales macroscopically
unimportant

m only time averaged quantities measurable (relevant)

B Energy as the only relevant macroscopically conserved quantity
restriction on the phase-space trajectory

B Thermodynamic equilibrium — macroscopically static state

How do we caleulate time averaged quantities? )

LSU
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ntroduction

Ergodicity in equilibrivm statistical physics

B Fundamental ergodic theorem (Birkhoff)

m Phase space homogeneously covered by the phase trajectory

[im . 2r(E)
T—ooo T Z(E)

B Equilibrium ergodic macroscopic state

B homogeneously spread over the allowed phase space
m characterized by homogeneous parameters ({E, T}, {N, pi},...)
B number of relevant parameters (Legendre pairs) é priort unknown

How do we determine the phase space J

covered by the phase space tmjectorg? LSU
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ntroduction

Homogeneity of thermodynamic potentials

B Homogeneity in the phase space

ks ks

S(E) =kgInT(E) = 5 InT(E) = ~ InT(vE)
HT)=- kiTIn [‘rr e*BH]V =— #In [Tr efﬂ”H}

n Homogewe'u:g of thermodgwamio potentials (Euler)
aFT,V,N,....X;,...) = KT,aV,aN,...,aX,...)

Density of the free energy f= F/N
- function of only densities of extensive variables Xi/N

LSU
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ntroduction

Homogeneity of thermodynamic potentials

B Homogeneity in the phase space

S(E) =kgInT(E) = % InT(E) = % InT(vE)
HT)=- %—In [‘rr e*BH]V =— #In [Tr efﬂ”H}

n Homogewe'u:g of thermodgwamio potentials (Euler)
aFT,V,N,....X;,...) = KT,aV,aN,...,aX,...)

Density of the free energy f= F/N
- function of only densities of extensive variables Xi/N

uniqueness of the thermodynamic limit N — oo

Ergodicity (homogeneity) guarantees existence and
J LSU
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ntroduction

Ergodicity breaking

B Ergodicity gives meaning to statistical averages
B Thermodynamic properties in the infinite-volume Limit

m Ergodicity breaking — lmproper statistical phase space

caused by a phase transition breaking a symmetry of the
Hamiltontan
without apparent symnetry breaking — glass-like behavior

B Means to restore ergodicity

Measurable (phgsioaL) symmetry breaking fields
Real veplicas (non-measurable symmetry breaking fields)

LSU
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ntroduction

Ergodicity breaking

B Ergodicity gives meaning to statistical averages
B Thermodynamic properties in the infinite-volume Limit

m Ergodicity breaking — lmproper statistical phase space
caused by a phase transition breaking a symmetry of the
Hamiltonian
without apparent symnetry breaking — glass-like behavior
B Means to restore ergodicity

Measurable (phgsioaL) symmetry breaking fields
Real veplicas (non-measurable symmetry breaking fields)

Brgodicity must be restored to establish stable equiLLbrLumJ

LSU
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Ergodicity breaking Homogeneous wodels  Disordered

Model of interacting spins (Heisenberg)

HJ,S == JiS;i-S;

i<j

Spin exchange

B Ferromagwnetic interaction: J;j > 0
B Antiferromagwnetic interaction: J;j < 0

Regular orgjstaLLLwe structure (Lattice)

Strong awisotropg: ownly single spin projection (57) interacts

Istng model
HJ, S == JySiS;
i<j
Classical spins with S; = £1 (7/2 units)

LSU
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Ergodicity breaking

Howmogeneous wmodels  Disordere

Other spin models — generalizations of sing |

m Potts model - p > 2 spin projections

n=12...,p
B Spin representation

Ho= = Jibn.n

i<j

Hp[J,S]:f%ZJUSrijZh-Si’

Potts vectors S; = {s, . ..

inj

—1
s}, values ave state vectors {ea}s_;

p=2

A

p=3 p=4
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Ergodicity breaking Homogeneous models  Disordered models

Other spin models —- generalizations of tsing I

p p

D=0, > éegg=po, €xep = poag — 1
A=1 A=1

B Explicit representation

0 A<a
(p—cx) _
e = I;Jflfaa A=«
1 p(p—a)
a5 o A> .
B p-spin moolel
H,[4, 8] = Z Jiip.iyS3Sp - Si, -
1<h<i<...<ip
S are Ising spins, p = 2 reduces to Ising LSU
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Ergodicity breaking Homogeneous models  Disordered models

(sing thermodynamics - mean-field solution

B Thermally induced spin fluctuations — free energy
—BF(T) = InTrsexp {—BH[J, 5]}

B Long-range ferromagnetic interaction: Jij = —J/N
m Mean-field (Welss) solution

F(T,m)/N= JTmz — % In 2 cosh(5Jm)

with a global magwetization m
B equilibrium state - magnetization minimizing F(T, m)
B Equilibrivm magnetization
m = tanh(8Jm)
LSU
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Ergodicity breaking Howmogeneous models  Disord

Critical point — ergodicity § symmetry breaking

B Critical point J = 1 separates two phases

B Paramagwnetic: m = 0
m Ferromagnetic: 1 > m”® > 0

[ Ergoaliaitg broken in the FM phase (in a trivial wag)
m Spin-reflection symmetry H[J, S| = H[J, =S| broken
B Now-ergodic situation: degenerate solution (F(T, m) = F( T, —m))

B Adding magnetic energy H'[h, S| = —h3 .S
lifts degeneracy § restores ergodicity

Ergodicitg (unigueness of equilibrium) restored
by a symmetry-breaking magnetic field }

LSU
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Ergodicity breaking onogencous models  Disordered models

Disorder § frustration — inhomogeneous spin exchange

{

B Randomness in the spin exchange

B system Llocally frustrated: fervo (red bond) and antifervo (blue
bond) randomly distributed

—_ + —
-—  —

LSU
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Ergodicity breaking onogencous models  Disordered models

Disorder § frustration — inhomogeneous spin exchange

i

B unbiased situation —- neither fervo nor antifervo ordering preferred
Gaussian random variables in mean—fleld Limit

N N
NUp o =D =0, N(£), => f=7F
Jj=1 j=1

B (sing model

N NS
P =\ eXp{‘zﬁ}

LSU
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Ergodicity breaking onogencous models  Disordered models

Disorder § frustration — inhomogeneous spin exchange

il

B Potts wmodel (not sy mmetric v.r.t. spin reflection)

[N —N(Jj— Jo/N)?
PUi) =\ g & (Jzﬂ et

Jo=>_ i Joj -- averaged (ferromagnetic) interaction

B p-spin model

| Np—1 Jiiy...i ZNPTT
P(Jus...;,) = pl exp {—”szl}

LSU
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Ergodicity breaking Homogeneous Disordered models

Thermodynawics of disordered and frustrated systems

- spln glasses

B Ergodic hypothesis - self averaging of thermodynamic potentials
(free energy in thermodynamic limit equals the averaged one)

B Low-temperature phase — Local magwnetic moments without
homogeneous magwnetic order

m Highly degenerate thermodynamic state — ergodicity broken
B No symwmetry of the Hamiltonian broken

How to reach thermody namtie Limit (tnfinite volume)?
How to restore ergodicity? What are the order parameters?

LSU
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Ergodicity breaking C 2 Disordered models

Real spin-glass systems

n Higth diluted magwnetic lons (Fe, M) tn noble metals (Au, Cu)

B RKKY interaction - generates effectively random long-range
spin exchange

B Critical behavior in magwnetic field -- FC § ZFC

- T —r—r—r—TT
ol
- 1
: o
H o
1 8 |
2 o
alg-
1 x
af-
5 iG 5 £ 25
o
T W
FIG. 7. Static ibilities of CuMn vs for 1.08 . .
and 2.02 at. % Mn. After zero-field cooling (H <0.05 Oe), ini- T £ 00 1 [
tial susceptibilities (b) and (d) were taken fo{ increasing tem- FIG. 1. Real part X' of the complex susceptibility X() as a function of temperature for sample Ilc (CuMn with 094 at. % Mn,
perature in a field of H =5.9 Oe. The susceptibilities (a) and (c) powder). Inset reveals frequency dependence and rounding of the cusp by use of strongly expanded coordinate scales. Measuring fre-

were obtained in the field H =5.9 Oe, which was applied above quencies: O, 1.33 kHz; 0, 234 Hz; X, 108 Hz; A, 2.6 Hz. From Mulder et al. (1981).

T} before cooling the samples. From Nagata et al. (1979).

LSU
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Real replicas Replication of the phase space Discrete RSB Cow

Real veplicas — stability w.r.t. phase-space scalings

Real replicas — means to probe thermodynamic homogeneity J

Replicated Hamiltonian: [H], = 35 H* = 37 5" . J;S7S7
a=1 a=1

Symmetry-breaking fields: AH(u) = 5 > atb > uSash

Averaged replicated free energy with coupled replicas

Fo(p) = —kBT% <|n Trexp {—Bi: H* — /3AH(;L)}>

av

LSU
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Real replicas Replication of the phase space Discrete RSB Cow

Real veplicas — stability w.r.t. phase-space scalings

Real replicas — means to probe thermodynamic homogeneity J

v 14
Replicated Hamiltonian: [H], = 32:21 H? = 2::1 > <> JiSTS;

Symmetry-breaking fields: AH(u) = 5 > atb > uSash
Averaged replicated free energy with coupled replicas

Fo(p) = —kBT% <|n Trexp {—Bi: H* — /3AH(;L)}>

AwaLgth continuation to non-integer parameter v

av

w.r.t. phase space scaling: lim M =0
n—0 dv
Real replicas - sbmulate impact of surrounding bathJ LS
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Real replicas Replication of the phase space Discrete RSB Cow

Annealed vs. quenched disorder

m Averaged (v-times replicated) partition function

v N v
(Z8)a = / DU T TT dIS:101S7] exp {—B > HL, sa]}
e=il

a=1 i=1

m Averaged (v-times replicated) free energy

v N v
—B(FR), = / D[ In / [TTIds5100S5]exp {—B > HU, sa]}
a=1

a=1i=1
m Replicas for disordered systems:

m uenched disorder (spin glasses) -- replica trick (v — 0)

BFqu = — lim F lim ((ZX),, — 1)}

v—=0 | V N—oo

m Annealed disorder - thermodynamic howmogeneity (v arbitrary)

1.
BFan = =7 Jfim_In(Z3),, LSU
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Real replicas Replication of the space  Discrete RSB Continuous RSE

Ergodicity breaking -- broken LRT in replicated space

B Breaking of LRT to inter-replica tnteraction pu?® =0

BL 1L by 2 )
fu:T ;Z{(Xb) +2‘7Xb}*(1*q)2
a#b
1 T d77 77]2/2 2 - ab cach - a
—— | — InTv, S 5K h) 'S
51/7‘@(9 nTr exp{/;’ ;X —&—6; }

X =(($)r)av = q, a=((F)P)av, h=h+ny/q
B Free energy f, must be analytic function of index

LSU
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Real replicas Replication of the phase space  Discrete RSB Cow

Ergodicity breaking -- broken LRT in replicated space

B Breaking of LRT to inter-replica tnteraction pu?® =0

2 12
= 5TJ i;{(xab)z +2q><"’b} —(1-gq)?

1 T dn  _ 2 2 o
—— [ =" PInTr exp LD PSS+ R S
) Vo v p{ﬂ gx 8 ;

X = {(8SP) )y — 4. a= () Pav. h=h+1yq

B Free energy f, must be analytic function of index

m Parist conditions for uwaLgth continuation

=il

B K < v — 1 different inter-replica susceptibilities x1,. .., Xk
with multiplicities vy, ..., vk

LSU
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Real replicas Replication of t ¢ Discrete RSB C

Ana Lgtic continuatlon

B Ownly specific matrices v X v allow for analytic continuation to
real v

LSU
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Real replicas Repl on ¢ ¢ Discrete RSB

Ana Lgtic continuatlon

B Ownly specific matrices v X v allow for analytic continuation to
real v

B Multiplicity of the order parameters - K different values

0 qo
G O

LSU
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Real replicas Repl on ¢ ¢ Discrete RSB

Ana Lgtic continuatlon

B Ownly specific matrices v X v allow for analytic continuation to
real v

B Multiplicity of the order parameters - K different values

0 qo
G O

LSU
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Real replicas ¢ Discrete RSB

Ana Lgtic continuatlon

B Ownly specific matrices v X v allow for analytic continuation to
real v
B Multiplicity of the order parameters - K different values

0 9 a1
@ 0 g a
g a1 0 qo
g g q O

LSU
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Real replicas ¢ Discrete RSB Conting

Ana Lgtic continuatlon

B Ownly specific matrices v X v allow for analytic continuation to
real v
B Multiplicity of the order parameters - K different values

0 9 a1
@ 0 g a
g a1 0 qo
g g q O

@ 0 ¢ ¢
g g 0 qo
g g q O

LSU
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Real replicas

Ana Lgtic continuatlon

B Ownly specific matrices v X v allow for analytic continuation to

real v

B Multiplicity of the order parameters - K different values

0
do
(4]
0
a2
a2
a2
a2

g=q+x,v=2,

Go g1 1 G2 Q2 QG2 Q2
0 a1 @1 @2 4@ @ 9
a1 0 9 @ ¢ 9@ @
@1 g 0 @ @ ¢ @
@2 g 92 0 g g o
@2 @ g g 0 g
@2 @2 9 g g 0 q
@2 @ 9 g q q 0

V*].:Z;(I//

LSU

Véclav janig 20th Mardi Grass Conference, LSU, Feb 15, 2015



Real replicas Replication of t ace  Disorete RSB Comtinu

Ultrameetric structure

ultrametric structure  -——  only block matrices of identical elements
- larger blocks multiples of smaller blocks
——  hierarchy of embeddings around diagonal
-——  ultrametric metrics (tree-like)

q 1‘
%

¢

g2

qs
LSL)
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Real replicas Replication of the pha ace Discrete RSB Comtlnuous RSE

MuLtLpLe repLica hierarchies

Averaged free energy density with K hierarchies of veplicas
Ax;= X1 — X1 = Axi1 >0, v - arbitrary positive

(g Ax1,y ooy AXK V1, ooy Y, )——<1—q ZAX/) —fln2

K
9 1 OO
+ % EH vy |2 <q+ ZI AX,-> ~ 8| -3 /m Dy In Zx

1/y
Hierarchical Local partition sums Z; = [f_ococ DN\ Z,’ﬂl}

Wnitial condition Zo = cosh |5 (h+1/G+ S AvAX)|

Gaussian measure D\ = d\ ef)‘2/2/\/ 2w
LSU
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Real replicas

m Ay, - inter-replica interaction
strength,
s - effective magnetic field due to

' S ' veplicated spins
| ’ [ ,
| T T T T T T | | ® v V: volume affected by replicated
| | S, | I spins -- range of inter-replica
[ [ I I Lnteraction
I S o N N
I A S G

N ' —
: : vV, P, : : — WM/D)\/Z,VLI (ﬁ,h/Jr /\/\/AX/)

/
v 6 [ ) ’ ,
L Vs P, | m Effective weight of surrounding

____________ spins in thermal averaging
Z'y
PL= T\
<ZIL1>/\/ LSU
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Real replicas Replication of the space  Diserete RSB Continuous RSE

owne-level embedding (1sing)

m (ocal magwnetization after thermalization of surrounding spins
mi = (p)(h+ i A, x) tanh[B(h+mi+ MyR)] 5 = {of t)a

t = tanh [ﬁ (h—i—n\/ZH- Zﬁl A,JT)(,)} with
(XD = [20, DX X(A)

m ! = p(h+m; A, x) - spin density (in volume Vo) including
bmpact of the bath (volume V1)
B Fluctuating internal magwnetic field (Gaussian random)

mi=_ Jgmi—m; | BRA—md) + BL(v—1)x
J J

m Red terms - mpact of thermalizing of outer spins (volume V1) | g
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Real replicas Replication of t space Discrete RSB Continuous RSE

Bauilibrium state — stationarity equations § stability

B Stationarity equations with discrete K replica hierarchies

Axi = (((O7-1)k)n — (((BOF) k) »
{InZi-1) i)y = ((In Z) k)

(
7 2(q+ Tl Bxi) + By

t = tanh {ﬂ (h N RSN )\/\/AX/)} ,
<t>l(77; /\Ka °coog /\/Jrl) = <Pl. oo <plt>/\1 c '>>\/ , PI= Zﬁl/<zﬂl>)\/
[ stabititg conditions determine number K

2

!
/\F—lﬁ2<<<1t2+2w(<t>?_1<t>?)>> > >0
i=0 A

LSU

Viéelav janig 20th Mardi Grass Conference, LSW, Feb 15, 2015



Real replicas Replication of t iscrete RSB Continuous RSB

nfinite many replica hierarchies |

Limit to infinite number of replica hierarchies K — oo J

B (nfinitesimal differences Ay and Av:
Ax; = Ax/K, Avy= Am/K, Ax;/Av; — x(m) < 0o

B Parisi continuous free energy (around 1RSB):

ﬂ(lfq*X1*X0(m1))2+ﬁ my (g + X1+ Xo(m))®

’c(‘fIaXL'771,f’r70;x(m)):,Z ;
_moq2] = é ‘/m1 i [q+X1 +Xo(m)]2 _ l <g1(m0~ h—|—7]\/a)>
4 Y 3 ; .

B (ntegral representation of the interacting part
gl(m07 h) = ]Eo(mo, my, h) © gl(h)
_ 1 [m™ - -
']I“mexp{2 / dm x(m) [02 + mgy(m; h+ h)@;,]}gl(h+h)
o LSU
gi(m; h) = 0g1(m, h)/Oh
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Real replicas Repl = Continuous RSB

nfinite many replica hierarchies

B Awnti time-ordering product from gquantum many-body PT

1 o0 1 /\1 '>\n71 e e
TAexp{/ d/\O(A)} = 1+Z/ d)\l/ / d\,O(\p) ... O(\1)
0 1 /0 Jo 0

B nitial condition (1RS®B)

gi(h) = gi(my, h) = mi In /OC \;I(ie‘f’z/2 [2cosh (B(h+ ¢v/x1))]™

1 —oo V2T

m Closed Lmplicit equation
g1(m; h) = E(m, my, h) o go(h)

=T, ex { /m1 dm’ x(m') [0Z + 2m'g|(m'; h + h)0y) } gy (h+h)

m

m Notation:  Xo(m) = [ dm/x(m') LSU
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Real replicas epli 0 ¢ Disere Continuous RSB

Discrete vs. continuous replica-symmetry breaking

Dlscrete RSB

Hierarchical embeddings -- ultrametric structure

No restriction on the replica-induced order parameters

The nwmber of veplica hierarchies K from stability conditions
Etther unstable or Locally stable

continuous RSB

Limit of infinite number of veplica hierarchies

nfinitesimal distance between replica hierarchies
Closed theory valepewole:thg of stabLLitg of the discrete scheme
Always margiwaLLg stable

LSU
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Application Ising RSB Ising-continuous Potts and -spin glass

Replica symmetric solution — ergodic asswmption

No replication, only original spins — ergodic assumption

Ergodicity not broken in the Low-temperature phase with a single
order parameter g = (m?) (veplica sywmetric)

m Free energy (J° = 1)
1 (o]
flq) = _g(l . — B[M Dnln2cosh [ (h+ nv/q)]

Stationarity equation g = [~ Dp tanh® [8 (h+1./q)]
StabiLit5 condition

A=1-p> <<1 — tanh? [ﬁ(h+'r)\/a)])2>' >0

Zero-temperature entropy: S(0) = —\/g ~ —0.798 LSU
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Application Ising RSB 1sing

RﬁpLica sy mmetrie solution - thermod yna miLes

S T T T T T T T T
(T) [T T T f(T) e wSK
04 —a SK — "
-0.8— —
0.3+ *
02+ -
1 -0.85+ =
0.1 —
0 / 09+ |
014 | | | i | | | 1
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
T T

LSU
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Application Ising RSB Ising-continuol

First level replica-symmetry (ergodicity) breaking

B Ergodicity broken in the SG phase — one embedding

*%(1 —q)’+ %(V — Dx(29+x) + gx

- % /O:C)Dnln/o:C DA {2cosh [B(h+nv/q+ AV}

flg;x,v) =

B Stationarity equations (t = tanh[B(h+ 1/ + A/X)])
g={(O3n, gea=g+x= {0y
v = [(Incosh[B(h+1v/q+ Av/X)])
— In (cosh” [3(h + 1/ + AVRODY"|

B*x(29+ x)

n stubititg conditions

po=1-((u-5),),

/\1:1*62<<17(l—y)tz—y<t2>)\>2>n LSU

A
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Application Ising RSB Ising-conting

1RS® - thermiod yna mies

S(T) 5 v v T f(T)
04 «— |RSB —
=—a SK
03k | -08
02+ —
r 4 -0.85
0.1 —

LSU
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Application

RS §1RSE - instability

Ising RSB Ising-continuous

0.2 0.4 0.6 08 T/T 1
c

lnsta bLLLtH
field

at zero wmagwnetic

Véclay janid

o2 04 06 08 10

Sq phase in magnetic field - AT
Line

LSU
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Application Ising RSB Ising-continuous Potts and -spin glass

SK wmodel at zero magwnetic field

ownly asy mptotic expansions available for K — oo J

B swall expansion parameter 7 = (Tc — T)/T.

.2 CAK—1+1) .1
ArK = K - K -
XrZokyr T M 2kr1 0 T Tk ™
12K(K+1)+1 4 72
K _— . 2 K -
= =] = = - 7 /\ = ——
QM =gea=qg+x1—Xk=T+ 32K+ 1) URAY 3 2K+ 1)
= 1-— QK A LN R —
XT ﬁ( Q +;m/ X/) 30K+ 17
1 7 29 1 1\*
Af= =8 4 “7 .5y = 5[ =
<6T T2 107 ) 360 \K
Parist continuous ansatz proven right ] LSU

Viéelav janig 20th Mardi Grass Conference, LSW, Feb 15, 2015



Application Ising RSB Ising-continuous Potts and -spin glass

SK model tn magwnetic field

B Full RSB at AT line reduces to 1RS® (h > 0)
B sSwmall expansion parameter oo = 52 (1 — t§)2>n -1

(to = tanh[B(h+ n/q)])

_ 2<t2( — ttz)) >n
(@ %)3>
1 52 2>7] -1

X1 = + 0(c?)

252y 173/52<r3( - 1)),
VK= v+ (K+1-2)Av/K DY =xi/K

a(-8)°(20-38) +3(§-1)r @5+ (§-1)v)))
- (1-5)),

n

28% x1Av

M=
! 3K2 v +2 LSU
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Application Ising RSB Ising-continuous Potts and -spin glass

Potts glass (p < 4): discrete RSB

’ - p—2 C<16712p+p2
B Two 1RS® solutions for v; = 5= + “sa-p) T

m Locally stable solution (wear Tc and p > p* ~ 2.82)

2
q(l) =0, AX(U 208 P
4—p

2
stability function: AV = T (757 — 24p + 12)

B unstable solution (p > p* unphysical)

. —12+424p—-7p° , 2 . 2
@) - @) -
Q7 =T, AxY = T
3(4-p2(p—2) 4—p
B K RSB (from the unstable one)
qK;,L12*24P+7P2T2 XK;l 2 -
32 (4—p)’(p—2) "TK@-p)
K . P*2 2 3 2 7 2 2/71
=224 2 |1342p-— 3—6p+-p° )
v > +4_p{+2p p+( p+4p> ok |7 LSU
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Application 3 = si s Potts and -spin glass

Potts glass (p = 3): coexistence

1RSE 0 FRS® coexist near T, )

0010

0.008

12
a 0.006 006
“ < Zf 0.004 :2; ;7|
Q 003
0.002 0.02
001
0.000 0.
P
T
Stability and entropy of 1RSB Free-energy difference as function
solution (p = 3) of p

Free-energy differences:

(p—1)(p—2)*r°
3(4-p)(6—P) LSU

(p—1)(p(7p — 24) + 12)*7°
720(4 — p)°

B(fe — firsg) = , B(fe — frs) =
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Application lsing RSB Ising-continuous Potts and -spin glass

p-spin glass: 1RSE |

B Discontinuous transition to the Low-temperature phase for p > 2
B Asywmptotic solution p — 00: IRSB

f('[F',*}OO)(qv X1, Ml)

= —%—[1 —(g+x1)(1—=In(g+ x1)] — i In [2 cosh(pyh)]
_% [x1 —(g+x1)In(qg+ X1)]—uqu {In qg+p (1 — tanh2(u1h))}

rescaled variable (11 = [y
B Low-temperature solution (p = 00) - Random energy wodel
x1=1-q, q=exp{—p(1—tanh’(u1h)},
1 = 24/In [2 cosh(p1h)] — htanh(ph)

for 3 > 2+/In[2cosh(Bh)] — htanh(Bh),

, LSU
otherwise g+ x1 = 0 and 1 =
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Application Ising RSB Ising-continuous Potts and -spin glass

p-spin glass: 1RS®B

B Negative entropy for p < oo
- full continuous free energ y around 1RS® needed

S(;’f))g ——) T T T In(-S) 0 T T 777./‘»777,,-‘77 T
. -~ p:3 . T=0

201~ —

| i

0.06 =B B

L i 4

i

60 H .

0.03 [ 1

80 —

-100 —

0 i |

| -120 —

-0.03 =4 -140 B
L | L | L | L | L | L | L | L | L

0 01 02 03 04 0 01 02 03 04 05
T 1/p Lsu
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conclusions

Ergodicity breaking without symmetry breaking

Frustration with disorder prevents existence of physical
sywimetry-breaking fields

Real replicas — means to test thermodynamic homogeneity
(ergodicity)

Analytic continuation to non-integer replication index
mandatory — ultrametric structure

Broken LRT of inter-replica tnteraction — broken replica
symmetry (ergodioitg)

Hierarchical replications — series of adwmissible solutions
(equilibrivum states)

Local and global stab'LL'Ltnd conditions select the true equilibrivim

B continuous RSB —- murgiwuLLg stable
(available only via asy mptotic expansions) SU
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