Parquet equations for interacting and disordered electron systems: Self-energy and the role of the Ward identity

václav Janíš

Institute of Physics, Academy of Sciences of the Czech Republic, Praha, CZ and Fulbright Scholar at Louisiana State University, Baton Rouge, USA

> 20th Mardí Gras Conference, LSU, February 14, 2015

Google/LSU Baton Rouge/LSULogoBlack.pdf Google/LSU Baton Rouge/LSULogoBlack.l

Microscopic description & macroscopic consistency

- Thermodynamic consistency: from microscopic statistical mechanics to thermodynamic (macroscopic) phenomena
- Macroscopic conservation laws -- microscopic Ward identities
- Baym-Kadanoff construction -- 1P self-consistency for the self-energy
- Quantum critical phenomena -- divergence in two-particle functions
- To control 2P criticality -- a direct (diagrammatic) approach to 2P functions (not via self-energy)
- Parquet equations -- 2P self-consistency eliminating spurious (non-integrable) divergencies

How to make 2P (parquet) approach thermodynamically consistent?

Outline

1 Quantum many-body systems

- Thermodynamics & Green functions
- Bethe-Salpeter & parquet equations
- 2 Thermodynamically consistent many-body parquet approach
 - Schwinger-Dyson equation and Ward identity generally
 - Perturbing the self-energy
 - 2P approach Linearized Ward identity and Schwinger-Dyson equation
- Thermodynamic consistency in disordered systems
 2P reducibility and parquet equations in disordered systems
 Ward identity and the full 2P vertex

4 Conclusions

oogle/LSU Baton Rouge/LSULogoBlack.pdf Google/LSU Baton Rouge/LSULogoBlack.bb

▲ロと▲母と▲臣と▲臣と 臣 めんぐ

Equilibrium Hamiltonian § general perturbation

Equilibrium hamiltonian: Tight-binding description

$$\widehat{H} = \sum_{\mathbf{k}\sigma} \epsilon(\mathbf{k}) c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{\mathbf{i}\sigma} V_{i} \widehat{n}_{\mathbf{i}\sigma} + U \sum_{\mathbf{i}} \widehat{n}_{\mathbf{i}\uparrow} \widehat{n}_{\mathbf{i}\downarrow}$$

General perturbation: Normal & anomalous terms

$$\begin{split} \widehat{H}_{\text{ext}} &= \int d\mathbf{1} d\mathbf{2} \left\{ \sum_{\sigma} \eta_{\sigma}^{||}(1,2) c_{\sigma}^{\dagger}(1) c_{\sigma}(2) \quad \dots \text{ conserves charge § spin} \right. \\ &+ \left[\eta^{\perp}(1,2) c_{\uparrow}^{\dagger}(1) c_{\downarrow}(2) + \bar{\eta}^{\perp}(1,2) c_{\downarrow}^{\dagger}(2) c_{\uparrow}(1) \right] \quad \dots \text{ conserves charge} \\ &+ \sum_{\sigma} \left[\bar{\xi}_{\sigma}^{||}(1,2) c_{\sigma}(1) c_{\sigma}(2) + \xi_{\sigma}^{||}(1,2) c_{\sigma}^{\dagger}(1) c_{\sigma}^{\dagger}(2) \right] \quad \dots \text{ conserves spin} \\ &+ \left[\bar{\xi}^{\perp}(1,2) c_{\uparrow}(1) c_{\downarrow}(2) + \xi^{\perp}(1,2) c_{\downarrow}^{\dagger}(2) c_{\uparrow}^{\dagger}(1) \right] \dots \text{ changes charge § spin} \right\} \\ & = \left[\overline{\xi}_{\sigma}^{||}(1,2) c_{\uparrow}(1) c_{\downarrow}(2) + \xi^{\perp}(1,2) c_{\downarrow}^{\dagger}(2) c_{\uparrow}^{\dagger}(1) \right] \dots \text{ changes charge § spin} \right\} \\ & = \left[\overline{\xi}_{\sigma}^{||}(1,2) c_{\uparrow}(1) c_{\downarrow}(2) + \xi^{\perp}(1,2) c_{\downarrow}^{\dagger}(2) c_{\uparrow}^{\dagger}(1) \right] \dots \text{ changes charge § spin} \right] \\ & = \left[\overline{\xi}_{\sigma}^{||}(1,2) c_{\uparrow}(1) c_{\downarrow}(2) + \xi^{\perp}(1,2) c_{\downarrow}^{\dagger}(2) c_{\uparrow}^{\dagger}(1) \right] \dots \text{ changes charge § spin} \right] \\ & = \left[\overline{\xi}_{\sigma}^{||}(1,2) c_{\uparrow}(1) c_{\downarrow}(2) + \xi^{\perp}(1,2) c_{\downarrow}^{\dagger}(2) c_{\uparrow}^{\dagger}(1) \right] \dots \text{ changes charge § spin} \right] \\ & = \left[\overline{\xi}_{\sigma}^{||}(1,2) c_{\uparrow}(1) c_{\downarrow}(2) + \xi^{\perp}(1,2) c_{\downarrow}^{\dagger}(2) c_{\uparrow}^{\dagger}(1) \right] \dots \text{ changes charge § spin} \right] \\ & = \left[\overline{\xi}_{\sigma}^{||}(1,2) c_{\downarrow}(1) c_{\downarrow}(2) + \xi^{\perp}(1,2) c_{\downarrow}^{\dagger}(2) c_{\uparrow}^{\dagger}(1) \right] \dots \text{ changes charge § spin} \right] \\ & = \left[\overline{\xi}_{\sigma}^{||}(1,2) c_{\downarrow}(1) c_{\downarrow}(2) + \xi^{\perp}(1,2) c_{\downarrow}^{\dagger}(2) c_{\uparrow}^{\dagger}(1) \right] \dots \text{ changes charge § spin} \right] \\ & = \left[\overline{\xi}_{\sigma}^{||}(1,2) c_{\downarrow}(1) c_{\downarrow}(2) + \xi^{\perp}(1,2) c_{\downarrow}^{\dagger}(2) c_{\downarrow}^{\dagger}(1) \right] \dots \text{ changes charge § spin} \right] \\ & = \left[\overline{\xi}_{\sigma}^{||}(1,2) c_{\downarrow}(1) c_{\downarrow}(2) + \xi^{\perp}(1,2) c_{\downarrow}^{\dagger}(2) c_{\downarrow}^{\dagger}(1) \right] \dots \text{ changes charge § spin} \right] \\ & = \left[\overline{\xi}_{\sigma}^{||}(1,2) c_{\downarrow}(1) c_{\downarrow}(2) + \xi^{\perp}(1,2) c_{\downarrow}(2) c_{\downarrow}^{\dagger}(1) c_{\downarrow}(2) + \xi^{\perp}(1,2) c_{\downarrow}(2) c_{\downarrow}(2) c_{\downarrow}(2) \right] \\ & = \left[\overline{\xi}_{\sigma}^{||}(1,2) c_{\downarrow}(1) c_{\downarrow}(2) + \xi^{\perp}(1,2) c_{\downarrow}(2) c_{\downarrow}(2) c_{\downarrow}(2) \right] \\ & = \left[\overline{\xi}_{\sigma}^{||}(1,2) c_{\downarrow}(2) c_{\downarrow}(2) + \xi^{\perp}(1,2) c_{\downarrow}(2) c_{\downarrow}(2) c_{\downarrow}(2) c_{\downarrow}(2) c_{\downarrow}(2) \right] \\ & = \left[\overline{\xi}_{\sigma}^{||}(1,2) c_{\downarrow}(2) c_{\downarrow}(2$$

Thermodynamics & Green functions - unrenormalized

 Thermodynamic potential with external sources (weak non-equilibrium)

$$\Omega[G^{(0)-1},H] = -\beta^{-1}\log \operatorname{Tr}\left[\exp\left\{-\beta\left(\widehat{H} + \widehat{H}_{ext} - \mu\widehat{N}\right)\right\}\right]$$

unperturbed 1P Green function $G^{(0)-1} = [i\omega_n - \epsilon(\mathbf{k}) - \mu]$ **1**P Green function

$$G_{\sigma\sigma'}(\mathbf{k},\mathbf{k}';\tau,\tau') = -\frac{1}{\hbar} \operatorname{Tr}\left\{\widehat{\rho}_{H} \mathcal{T}\left[c_{\mathbf{k}\sigma}^{\dagger}(\tau)c_{\mathbf{k}'\sigma'}(\tau')\right]\right\} = \frac{\delta\Omega[G^{(0)-1},H]}{\delta G^{(0)-1}(\mathbf{k},\tau;\mathbf{k}',\tau')}$$
$$\widehat{\rho}_{H} = \exp\left\{-\beta\widehat{H}\right\}/\operatorname{Tr}\exp\left\{-\beta\widehat{H}\right\}$$

■ 2P Green function

$$G_{2}(12,34) = -\frac{1}{\hbar^{2}} \operatorname{Tr}\left\{\widehat{\rho}_{H} \mathcal{T}\left[\widehat{\psi}(1)\widehat{\psi}(3)\widehat{\psi}(4)^{\dagger}\widehat{\psi}(2)^{\dagger}\right]\right\}$$

「ヨト・ヨト・ヨト

$$1 = (\mathbf{R}_1, \tau_1) \dots$$

Green functions from a renormalized functional (Baym & Kadanoff)

Renormalized generating functional -- "Legendre transform" of the thermodynamic potential

$$\Phi[G,H] = \Omega[G^{(0)-1},H] - \int d\,\overline{1} \left(G^{(0)-1}(1,\overline{1}) - G^{-1}(1,\overline{1})\right) G(\overline{1},1')$$

IP Green function and self-energy (equilibrium)

$$G^{\alpha}(12) = \frac{\delta \Phi[G, H]}{\delta H_{\bar{\alpha}}(2, 1)} \bigg|_{H=0}, \qquad \Sigma^{\alpha}(12) = \frac{\delta \Phi[G, 0]}{\delta G_{\bar{\alpha}}(2, 1)}$$

2P Green and vertex functions (equilibrium)

$$G^{(2)\alpha}(13,24) = \frac{\delta^2 \Phi[G,H]}{\delta H_{\alpha}(4,3)\delta H_{\bar{\alpha}}(2,1)} \bigg|_{H=0} \Lambda^{\alpha}(13,24) = \frac{\delta^2 \Phi[G,0]}{\delta G_{\alpha}(4,3)\delta G_{\bar{\alpha}}(2,1)}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Fundamental relations between 1P § 2P GF

Dyson equation

$$G^{(0)-1}(1,2) - G^{-1}(1,2) = \Sigma^{\alpha}(12) = \frac{\delta \Phi[G,H]}{\delta G_{\alpha}(2,1)} \bigg|_{H=0}$$

Schwinger-Dyson equation -- projection of Schrödinger equation

$$\Sigma_{\sigma}(k) = rac{U}{eta N} \sum_{k'} G_{-\sigma}(k') \left[1 - rac{1}{eta N} \sum_{q} \Gamma_{\sigma-\sigma}(k,k';q) G_{\sigma}(k+q) G_{-\sigma}(k'+q)
ight]$$

Bethe-Salpeter equations

$$\Gamma(k, k'; q) = \Lambda^{\alpha}(k, k'; q) - [\Lambda^{\alpha} GG \odot \Gamma](k, k'; q)$$

Generalized Ward identity (thermodynamic consistency)

$$\Lambda^{\alpha}(13,24) = \frac{\delta \Sigma^{\alpha}(1,2)}{\delta G^{\alpha}(4,3)}$$

SD & WI hold simultaneously in full exact but none approximate LSU (even asymptotically exact) theory

Necessity to control directly 2P functions

- Critical behavior and phase transitions due to singularities in Bethe-Salpeter equations
- Two-particle self-consistency needed to eliminate unphysical (non-integrable) singularities
- Stable equilibrium state in the critical region
 -- full control of 2P functions necessary
- BK approach does not work -- 2P vertex not explicitly known for the given self-energy (2P singularities not controlled)
- Inverse procedure to BK:
 - Direct (diagrammatic) approximation for 2P vertices
 - Introduce a two-particle self-consistency (when needed)
 - Construct a self-energy to the given 2P vertex
 - Ward identity generally lost

Thermodynamic consistency -- Ward identity to be reintroduced (macroscale)

ヘロア 人間 アメヨア 小田 アー

Bethe-Salpeter equation - electron-hole channel

Multiple simultaneous scatterings -- electron-hole ladder

Conserving (bosonic) transfer (four) momentum: k - k'

$$\begin{split} \Gamma_{\sigma\sigma'}(k,k';q) &= \Lambda_{\sigma\sigma'}^{eh}(k,k';q) - \frac{1}{\beta\mathcal{N}}\sum_{q''}\Lambda_{\sigma\sigma'}^{eh}(k,k';q'') \\ &\times G_{\sigma}(k+q'')G_{\sigma'}(k'+q'')\Gamma_{\sigma\sigma'}(k+q'',k'+q'';q-q'') \end{split}$$

■ Decomposition of the full vertex: All = irreducible ∪ reducible (diagrams)

$$\Gamma_{\sigma\sigma'} = \Lambda^{eh}_{\sigma\sigma'} + \mathcal{K}^{eh}_{\sigma\sigma}$$

Bethe-Salpeter equation - electron-electron channel

Multíple símultaneous scatterings -- electron-electron ladder

Conserving (bosonic) transfer (four) momentum: k + k' + q

$$\begin{split} \Gamma_{\sigma\sigma'}(k,k';q) &= \Lambda^{ee}_{\sigma\sigma'}(k,k';q) - \frac{1}{\beta\mathcal{N}}\sum_{q''}\Lambda^{ee}_{\sigma\sigma'}(k,k'+q'';q-q'') \\ &\times G_{\sigma}(k+q-q'')G_{\sigma'}(k'+q'')\Gamma_{\sigma\sigma'}(k+q-q'',k';q'') \end{split}$$

■ Decomposition of the full vertex: All = irreducible ∪ reducible (diagrams)

$$\Gamma_{\sigma\sigma'} = \Lambda^{ee}_{\sigma\sigma'} + \mathcal{K}^{ee}_{\sigma\sigma'}$$

→ Ξ → ...

Vertex functions -- Parquet approach (two channels)

- Basic concept: 2P reducibility -- not uniquely defined
- Channel-dependent decompositions of the full vertex: $\Gamma_{\sigma\sigma'} = \Lambda^{ee}_{\sigma\sigma'} + \mathcal{K}^{ee}_{\sigma\sigma'} = \Lambda^{eh}_{\sigma\sigma'} + \mathcal{K}^{eh}_{\sigma\sigma'}$
- Fully irreducible vertex (diagrammatically): $\mathcal{I} = \Lambda^{eh} \cap \Lambda^{ee}$
- Existence (applicability) of the parquet decomposition:

 $\mathcal{K}^{\textit{ee}} \cap \mathcal{K}^{\textit{eh}} = \emptyset$

Fundamental parquet decomposition:

 $\Gamma = \mathcal{I} \cup \mathcal{K}^{ee} \cup \mathcal{K}^{eh} = \Lambda^{eh} \cup \Lambda^{ee} \setminus \mathcal{I} = \mathcal{I} + \mathcal{K}^{eh} + \mathcal{K}^{ee} = \Lambda^{ee} + \Lambda^{eh} - \mathcal{I}$

- Parquet equations: Bethe-Salpeter equations with Γ replaced by the fundamental parquet decomposition
- **I** Input to parquet equations: fully irreducible vertex \mathcal{I} , G_{σ}
- Output: 2PIR vertices Λ^{eh} and Λ^{ee}
- **I** No prescribed connection between Σ and Λ^{α} or Γ

ロ と く 同 と く 国 と く 目 と

Parquet equations for interacting systems

- Non-locality in space & time -- parquet equations also locally
- IP propagators in the parquet equations: Self-energy from Schwinger-Dyson equation
 - Thermodynamic consistency not guaranteed: Singularity in the BSE does not break the symmetry of the self-energy
 - Parquet equations (2P approach) break down beyond the critical point (singularity in BSE)!
- Thermodynamic consistency only via Ward identity
- Full WI cannot be resolved
- WI does not determine the self-energy (energy not conserved) (unlike disordered systems)

oogle/LSUBaton Rouge/LSULogoBlack.pdf Google/LSUBaton Rouge/LSULogoBlack.l

イロト イ団ト イヨト イヨト 三日

1P propagators § 2P vertices

Schwinger-Dyson equation: Self-energy and the full 2P vertex

Ward identity: Self-energy and 2P irreducible vertex

One can never fulfill both identities!

< ロ > < 同 > < 回 > < 回 > .

Two-particle criticality

- Transition to an ordered state via a critical point -- divergence in a Bethe-Salpeter equation
- Magnetic order -- electron hole bubbles (local irreducible vertex)

$$\Gamma_{\uparrow\downarrow}(k,k';q) = \frac{\Lambda^U_{\uparrow\downarrow}}{1 - \Lambda^U_{\uparrow\downarrow}\chi_{\downarrow\downarrow}(k-k')\Lambda^U_{\downarrow\uparrow}\chi_{\uparrow\uparrow}(k-k')}$$
(1)

with
$$\chi_{\sigma\sigma'}(q) = (\beta N)^{-1} \sum_k G_{\sigma}(k) G_{\sigma'}(k+q)$$

• Critical point: $\Lambda^U_{\uparrow\downarrow} \chi_{\downarrow\downarrow}(0) = -1$

How to treat the theory beyond the critical point?

- Emergence of magnetic order spin-polarized self-energy
- Only in thermodynamically consistent theories

< ロ > < 同 > < 回 > < 回 > .

Perturbed self-energy - magnetic ordering

- Repulsive particle interaction -- electron-hole scattering dominant
- Linear-response theory -- unperturbed Λ^{eh} (Λ^U) determines the self-energy
- Longitudinal magnetic order (eh bubbles): normal self-energy

Transversal (spin flip) magnetic order (eh ladders): self-energy anomalous only in the spin-polarized state

$$\Sigma_{\uparrow\downarrow}(\bar{\eta}^{\perp}) \doteq \begin{pmatrix} \uparrow & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\$$

ogle/LSU Baton Rouge/LSULogoBlack.pdf Google/LSU Baton Rouge/LSULogoBlack.bl

Perturbed self-energy - superconducting ordering

- Attractive particle interaction -- electron-electron scattering dominant
- Linear-response theory -- unperturbed Λ^{ee} determines the self-energy
- Triplet superconducting order (ee bubbles): anomalous self-energy § anomalous vertex (does not conserve spin)

Singlet superconducting order (ee ladders): anomalous self-energy

Linearized Ward identity

- WI resolved w.r.t. symmetry-breaking field only normal component
- Línearízed WI in the external magnetic field (longitudinal §

Mathematical expressions

$$egin{aligned} \Sigma_{\uparrow}(k) &= rac{1}{eta N} \sum_{q} \Lambda^U_{\uparrow\downarrow}(k,k;q) G_{\downarrow}(k+q) \ \Sigma_{\uparrow\downarrow}(k) &= rac{1}{eta N} \sum_{k'} \Lambda^{eh}_{\uparrow\downarrow}(k,k';0) G_{\uparrow\downarrow}(k') \end{aligned}$$

Vertex depends quadratically on the perturbing (magnetic) field

LSU

SDE in the thermodynamically consistent approach

Linearized WI: symmetry of the self-energy gets broken at the divergence in the BSE for a zero eigenvalue of

 $M_{k,k'} = \delta_{k,k'} + \Lambda_{\uparrow\downarrow}(k,k';0)G_{\uparrow}(k')G_{\downarrow}(k')$

■ 1P propagators should use Σ from LWI in all equations with 2P functions: BSE, SDE

Schwinger-Dyson equation with $\Gamma_{\sigma\sigma'}$ and G_σ from the parquet equations determines the physical (thermodynamic) self-energy

SDE in the thermodynamically consistent approach

Linearized WI: symmetry of the self-energy gets broken at the divergence in the BSE for a zero eigenvalue of

 $M_{k,k'} = \delta_{k,k'} + \Lambda_{\uparrow\downarrow}(k,k';0)G_{\uparrow}(k')G_{\downarrow}(k')$

■ 1P propagators should use Σ from LWI in all equations with 2P functions: BSE, SDE

Schwinger-Dyson equation with $\Gamma_{\sigma\sigma'}$ and G_{σ} from the parquet equations determines the physical (thermodynamic) self-energy

$$egin{aligned} \Sigma_{\uparrow}(k) &= rac{U}{eta N} \sum_{k'} G_{\downarrow}(k') \left[1 - rac{1}{eta N} \sum_{k'} G_{\downarrow}(k'') G_{\uparrow}(k+k'-k'')
ight. \ & imes \Gamma_{\uparrow\downarrow}(k',k'';k-k'')
ight] \end{aligned}$$

LSU

Parquet equations for disordered electrons

- Quenched disorder § no ee interaction
 - -- no dynamics, energy conserved
- Equilibrium thermodynamics
 - -- renormalization of the dispersion relation
- Non-equilibrium -- Linear Response Theory (Kubo formalism)
 - Equilibrium two-particle Green function needed
 - Multiple scattering on impurities
 - Local scatterings -- mean field (CPA)
 - Nonlocal scatterings -- electron-electron and electron-hole simultaneous propagation distinguishable
 - Two-particle self-consistency -- via parquet equations (beyond CPA)
 - Vertex function not fully compatible with the ward identity
- Thermodynamic consistency -- corrections to the vertex from the parquet equations so that Ward identity is obeyed

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

Model description of scatterings on impurities

Noninteracting lattice electrons in a random lattice (impurities) in tight-binding representation:

$$\widehat{H}_{AD} = \sum_{\langle ij
angle} t_{ij}c_i^{\dagger}c_j + \sum_i V_ic_i^{\dagger}c_i$$

Disorder distribution (site independent):

$$\langle X(V_i) \rangle_{av} = \int_{-\infty}^{\infty} dV \rho(V) X(V)$$

binary alloy: $\rho(V) = c\delta(V - \Delta) + (1 - c)\delta(V + \Delta)$

Quenched disorder: Averaged free energy (thermodynamics)

$$F_{av} = -k_B T \Big\langle \ln \operatorname{Tr} \exp \Big\{ -eta \widehat{H}_{AD}(t_{ij}, V_i) \Big\} \Big\rangle_{av}$$

Good for thermodynamics and averaged one-electron functions, no information on transport and dynamical quantities

Two-particle reducibility and parquet decomposition

- Distinction between electron and holes necessary for parquet equations -- non locality in time or space
- Static theory -- non-local scatterings (beyond local mean-field)
- Expansion beyond MFT: non-local (off-diagonal) 1PGF

$$\overline{G}(E_{\pm},\mathbf{k}) = \frac{1}{N} \sum_{\mathbf{k}'} \frac{N\delta_{\mathbf{k},\mathbf{k}'} - 1}{E \pm i0^+ - \epsilon(\mathbf{k}') - \Sigma(E \pm i0^+,\mathbf{k})}$$

- Dístinguíshable two-particle reducibility
- Local díagrams -- fully irreducible
- Electron-hole simultaneous propagation: $\overline{G}(E_+, \mathbf{k})\overline{G}(E_-, \mathbf{q} + \mathbf{k})$
- Electron-electron simultaneous propagation: $\overline{G}(E_+, \mathbf{k})\overline{G}(E_-, \mathbf{q} \mathbf{k})$

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Bethe-Salpeter and the parquet equations (no WI)

BS equation with multiple nonlocal eh scatterings

$$\Gamma_{\mathbf{k}\mathbf{k}'}(E_{+}, E_{-}; \mathbf{q}) = \overline{\Lambda}_{\mathbf{k}\mathbf{k}'}^{eh}(E_{+}, E_{-}; \mathbf{q}) + \frac{1}{N} \sum_{\mathbf{k}''} \overline{\Lambda}_{\mathbf{k}\mathbf{k}''}^{eh}(E_{+}, E_{-}; \mathbf{q})$$
$$\times \overline{G}(E_{+}, \mathbf{k}'') \overline{G}(E_{-}, \mathbf{k}'' + \mathbf{q}) \Gamma_{\mathbf{k}''\mathbf{k}'}(E_{+}, E_{-}; \mathbf{q})$$

BS equation with multiple nonlocal ee scatterings

$$\Gamma_{\mathbf{k}\mathbf{k}'}(E_{+}, E_{-}; \mathbf{q}) = \overline{\Lambda}_{\mathbf{k}\mathbf{k}'}^{ee}(E_{+}, E_{-}; \mathbf{q}) + \frac{1}{N} \sum_{\mathbf{k}''} \overline{\Lambda}_{\mathbf{k}\mathbf{k}''}^{ee}(E_{+}, E_{-}; \mathbf{q} + \mathbf{k}' - \mathbf{k}'')$$
$$\times \overline{G}(E_{+}, \mathbf{k}'') \overline{G}(E_{-}, \mathbf{Q} - \mathbf{k}'') \Gamma_{\mathbf{k}''\mathbf{k}'}(E_{+}, E_{-}; \mathbf{q} + \mathbf{k} - \mathbf{k}'')$$

 $\mathbf{Q} = \mathbf{q} + \mathbf{k} + \mathbf{k}'$

Parquet equation

$$\Gamma_{\mathbf{k}\mathbf{k}'}(E_+, E_-; \mathbf{q}) = \overline{\Lambda}_{\mathbf{k}\mathbf{k}'}^{eh}(E_+, E_-; \mathbf{q}) + \overline{\Lambda}_{\mathbf{k}\mathbf{k}'}^{ee}(E_+, E_-; \mathbf{q}) - \mathcal{I}_{\mathbf{k}\mathbf{k}'}(E_+, E_-; \mathbf{q})$$

Fully irreducible vertex $\mathcal I$ - contains all local and multiply crossed diagrams

2P electron-hole symmetry - missing in CPA

Charge § time reflection (bipartite lattice)

 $G(\mathbf{k},z)=G(-\mathbf{k},z)$

Two-particle symmetry: Full vertex $\Gamma_{\mathbf{k}\mathbf{k}'}(z_+, z_-; \mathbf{q}) = \Gamma_{\mathbf{k}\mathbf{k}'}(z_+, z_-; -\mathbf{Q}) = \Gamma_{-\mathbf{k}'-\mathbf{k}}(z_+, z_-; \mathbf{Q})$ $(\mathbf{Q} = \mathbf{q} + \mathbf{k} + \mathbf{k}')$

Irreducible vertices: Symmetry transformation

$$\bar{\Lambda}^{ee}_{\mathbf{k}\mathbf{k}'}(z_+, z_-; \mathbf{q}) = \bar{\Lambda}^{eh}_{\mathbf{k}\mathbf{k}'}(z_+, z_-; -\mathbf{Q}) = \bar{\Lambda}^{eh}_{-\mathbf{k}'-\mathbf{k}}(z_+, z_-; \mathbf{Q})$$

< ロ > < 同 > < 回 > < 回 > .

ward identity

- 2P vertex from parquet equations (or other 2P constructions) does not fully obey Ward identity
- IP propagators in 2P approaches are input
- Vollhardt-Wölfle identity (continuity equation) ($\mathbf{k}_{\pm} = \mathbf{k} \pm \mathbf{q}/2$)

$$\Sigma(z_{+},\mathbf{k}_{+}) - \Sigma(z_{-},\mathbf{k}_{-}) = \frac{1}{N} \sum_{\mathbf{k}'} \Lambda_{\mathbf{k}\mathbf{k}'}(z_{+},z_{-};\mathbf{q}) \left[G(z_{+},\mathbf{k}'_{+}) - G(z_{-},\mathbf{k}'_{-}) \right]$$

 $G^{(2)} = GG + \Lambda GG \star G^{(2)}$ -- Bethe-Salpeter equation

• WI guaranteed in 2P approaches (parquets) only for $\omega = 0$ and q = 0

$$\Lambda_{\mathbf{k}\mathbf{k}'}(z_+, z_-; \mathbf{q}) \neq \overline{\Lambda}_{\mathbf{k}\mathbf{k}'}(z_+, z_-; \mathbf{q})$$

ogle/LSU Baton Rouge/LSULogoBlack.pdf Google/LSU Baton Rouge/LSULogoBlack.bb

< ロ > < 同 > < 回 > < 回 > .

vertex for the ward identity § self-energy

- Self-energy in the 1P propagator of the parquet equations $(E_{\pm} = E \pm i0^{+})$ $\Im \Sigma(E_{+}, \mathbf{k}) = \frac{1}{N} \sum_{\mathbf{k}'} \Lambda_{\mathbf{k}\mathbf{k}'}(E_{+}, 0) \Im G(E_{+}, \mathbf{k}')$ $\Re \Sigma(E_{+}, \mathbf{k}) = \Sigma_{\infty} + P \int_{-\infty}^{\infty} \frac{d\omega}{\pi} \frac{\Im \Sigma(\omega_{+}, \mathbf{k})}{\omega - E}$
- vertex Λ -- irreducible also locally (eh and ee processes indistinguishable)
- \blacksquare Irreducible vertex for the ward identity from the vertex of the parquet equations $\overline{\Lambda}$

$$\Lambda_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) = \bar{\Lambda}_{\mathbf{k}\mathbf{k}''}(\mathbf{q}) + \frac{1}{N} \sum_{\mathbf{k}''} \bar{\Lambda}_{\mathbf{k}\mathbf{k}''}(\mathbf{q}) \left[G_{+}(\mathbf{k}'') \left\langle G_{-} \right\rangle + \left\langle G_{+} \right\rangle G_{-}(\mathbf{k}_{-}) \right]$$

 $-\left\langle {{\it G}_{+}} \right
angle \left\langle {{\it G}_{-}}
ight
angle
ight
angle \Lambda_{{f k}^{\prime\prime}{f k}^{\prime}}({f q})$

 $\langle G_{\pm} \rangle = N^{-1} \sum_{\mathbf{k}} G(E_{\pm}, k)$

New quantities to define a vertex compatible with WI

$$\begin{split} \Delta G_{\mathbf{k}}(\omega,\mathbf{q}) &= G(E_{+},\mathbf{k}_{+}) - G(E_{-},\mathbf{k}_{-}) \\ \Delta \Sigma_{\mathbf{k}}(\omega,\mathbf{q}) &= \Sigma_{\mathbf{k}_{+}}(E_{+},\mathbf{k}_{+}) - \Sigma(E_{-},\mathbf{k}_{-}) \\ R_{\mathbf{k}}(\omega,\mathbf{q}) &= \frac{1}{N} \sum_{\mathbf{k}'} \Lambda_{\mathbf{k}\mathbf{k}'}(\omega,\mathbf{q}) \Delta G_{\mathbf{k}'}(\omega,\mathbf{q}) - \Delta \Sigma_{\mathbf{k}}(\omega,\mathbf{q}) \\ \left\langle \Delta G(\omega,\mathbf{q})^{2} \right\rangle &= \frac{1}{N} \sum_{\mathbf{k}} \Delta G_{\mathbf{k}}(\omega,\mathbf{q})^{2} \end{split}$$

 $E_{\pm} = E \pm \omega/2 \pm i0^+$, $\mathbf{k}_{\pm} = \mathbf{k} \pm \mathbf{q}/2$

BS equation for a thermodynamically consistent (physical) 2P vertex Γ

$$\frac{1}{N}\sum_{\mathbf{k}''} \left\{ \delta_{\mathbf{k},\mathbf{k}''} - \left[\Lambda_{\mathbf{k}\mathbf{k}''} - \frac{\Delta G_{\mathbf{k}}R_{\mathbf{k}''}}{\langle\Delta G^2\rangle} - \frac{R_{\mathbf{k}}\Delta G_{\mathbf{k}''}}{\langle\Delta G^2\rangle} + \langle R\Delta G \rangle \frac{\Delta G_{\mathbf{k}}\Delta G_{\mathbf{k}''}}{\langle\Delta G^2\rangle^2} \right] \\ \times G_{\mathbf{k}'_{+}}G_{\mathbf{k}'_{-}} \right\} \Gamma_{\mathbf{k}''\mathbf{k}'} = \Lambda_{\mathbf{k}\mathbf{k}'} - \frac{\Delta G_{\mathbf{k}}R_{\mathbf{k}'}}{\langle\Delta G^2\rangle} - \frac{R_{\mathbf{k}}\Delta G_{\mathbf{k}'}}{\langle\Delta G^2\rangle} + \langle R\Delta G \rangle \frac{\Delta G_{\mathbf{k}}\Delta G_{\mathbf{k}'}}{\langle\Delta G^2\rangle^2}$$

Conclusions 1

Parquet approach -- many-body & general

- Applicability of parquet approach
 -- distinguishability of electrons and holes
- Dynamical or nonlocal scatterings
- Intermediate coupling -- a divergence in a BS equation (RPA pole)
- To go beyond the pole -- 1P order parameter is to be introduced
- Thermodynamic consistency between 1P propagators § 2PI vertex in parquet equations
- Linearized Ward identity -- self-energy in 1P propagators in parquet equations
- Schwinger-Dyson equation -- determines the physical self-energy (not self-consistent in parquet equations)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusions II

Parquet approach -- dísordered systems

- Parquet approach only to nonlocal vertices
 -- beyond mean field (CPA)
- Electron-hole symmetry on 2P level leads to a single nonlinear integral equation
- 2P vertex does not obey ward identity
- Ward identity induces restriction of the irreducible vertex in 2P space
- Corrections to 2PIR vertex to restore WI
- Full 2P vertex from a Bethe-Salpeter equation with a restricted irreducible vertex and WI corrections
- Physical quantities from the full vertex obeying WI

3

gle/LSU Baton Rouge/LSULogoBlack.pdf Google/LSU Baton Rouge/LSULogoBlack.bb