Luca de' Medici

ESRF - Grenoble

<u>Slave-spin mean field and its application</u> <u>to Iron-based superconductors</u>

20th Mardi Gras Conference - Baton Rouge 14.02.2015

Correlated electrons and Mott transition

independent electrons \rightarrow <u>Fermi liquid</u>

- Effective mass
- coherence Temperature
- U very strong (U>U_c): Mott Insulator

<u>Mott insulators are predicted metallic by DFT</u> electrons are localized by correlations $(V_2O_3, Fullerenes, Cuprates...)$

Spectrum of charge excitations

The proximity to a Mott state strongly affects the properties of a system:

- reduced metallicity (Z~x)
- mass enhancement

. . .

- transfer of spectral weight from low to high energy (e.g. in optical response)
- tendency towards magnetism

Multi-orbital systems and Hund's coupling

Correlated materials: 3d, 4d, 5d, 4f, 5f electrons at the Fermi level

Example: transition metal oxides

Orbital degeneracy is often lifted (partially or totally) by the crystal-field Several correlated orbitals remain relevant for the low-energy physics

Example for 3d electrons : Iron-SC vs cuprates

The local coulomb interaction is different depending on the electrons occupying the same or a different orbital, and on the mutual spin direction

Hund's coupling "J" is a measure of this difference

Aufbau

Hund's Rules

In open shells:

- 1. Maximize total spin S
- 2. Maximize total angular momentum T
- (3. Dependence on J=T+S, Spin-orbit effects)

$$H = \sum_{k} H_{k}^{DFT} + U \sum_{i,m} n_{im\uparrow} n_{im\downarrow} + (U - 2J) \sum_{i,m>m'\sigma} n_{im\sigma} n_{im'\bar{\sigma}} + (U - 3J) \sum_{i,m>m'\sigma} n_{im\sigma} n_{im'\sigma} + H_{flip}$$

Many more parameters compared to the one band case: Coulomb and Hund's couplings, several bandwidths, crystal-field splitting...

Difficulty lies in dealing with the localized (atomic) and itinerant nature of electrons on equal footing

Techniques: Dynamical Mean-field Theory

Metzner & Vollhardt '89, Georges & Kotliar '92, Jarrell '92

<u>DMFT</u>: use of a self-consistent impurity model to calculate the local correlators (exact in the infinite coordination limit)

Impurity model
$$S = -\int_0^\beta \int_0^\beta d\tau d\tau' \sum_{m\sigma} d_{m\sigma}^{\dagger}(\tau) \mathcal{G}_m^{-1}(\tau - \tau') d_{m\sigma}(\tau') + H_{int}$$

DMFT Georges et al. RMP'96 Cluster DMFT Maier et al. RMP'05 LDA+DMFT Kotliar et al. RMP'06

Cheaper alternative: Slave-Spin mean-field

(e.g. as phase diagram surveyor)

LdM et al. PRB'05

Recipe:

- Enlarge the local Hilbert space (new variables + constraint)
- Treat the constraint on average
- Decouple the pseudo-fermions from the slave variables (renormalized non-interacting fermionic model)
- Treat the slave variables in a local mean-field

Examples:

- Slave Bosons (Kotliar and Ruckenstein)
- Slave Rotors (Florens and Georges)
- ...

Hilbert Space mapping

$$|0
angle = |n_f = 0, S^z = -1/2
angle$$

 $|1
angle \equiv d^{\dagger}|0
angle = |n_f = 1, S^z = +1/2
angle$

• Choice of the operators

$$d^{\dagger} \rightarrow 2S^{x}f^{\dagger}, \quad d \rightarrow 2S^{x}f$$

$$f^{\dagger}f = S^{z} + \frac{1}{2}$$

Constraint: Lagrange multiplier

$$H = -\sum_{m} t_{m} \sum_{\langle ij \rangle, \sigma} (d^{\dagger}_{im\sigma} d_{im\sigma} + h.c.) + H_{int}[d^{\dagger}, d]$$
$$H = -\sum_{m} t_{m} \sum_{\langle ij \rangle, \sigma} 4S^{x}_{im\sigma} S^{x}_{jm\sigma} (f^{\dagger}_{im\sigma} f_{im\sigma} + h.c.) + H_{int}[S]$$

 $\mathrm{H}_{\mathrm{flip}}$

$$H_{int} = U \sum_{i,m} n_{im\uparrow} n_{im\downarrow} + (U - 2J) \sum_{i,m>m'\sigma} n_{im\sigma} n_{im'\bar{\sigma}} + (U - 3J) \sum_{i,m>m'\sigma} n_{im\sigma} n_{im'\sigma} + H_{flip}$$

$$\begin{split} H_{int} &= U \sum_{i,m} (S_{im\uparrow}^z + \frac{1}{2}) (S_{im\downarrow}^z + \frac{1}{2}) + (U - 2J) \sum_{i,m > m'\sigma} (S_{im\sigma}^z + \frac{1}{2}) (S_{im'\bar{\sigma}}^z + \frac{1}{2}) \\ &+ (U - 3J) \sum_{i,m > m'\sigma} (S_{im\sigma}^z + \frac{1}{2}) (S_{im'\sigma}^z) + H_{flip} \end{split}$$

$$H_{flip} = -J\sum_{i} \left[S_{i1\uparrow}^{+} S_{i1\downarrow}^{-} S_{i2\downarrow}^{+} S_{i2\uparrow}^{-} + S_{i1\downarrow}^{+} S_{i2\uparrow}^{-} S_{i2\downarrow}^{+} \right]$$

Approximation for
$$H_{flip} \qquad -J\sum_{i} \left[S_{i1\uparrow}^{+} S_{i1\downarrow}^{+} S_{i2\uparrow}^{-} S_{i2\downarrow}^{-} + S_{i2\uparrow}^{+} S_{i1\uparrow}^{-} S_{i1\downarrow}^{-} \right]$$

$$H_0 = -\sum_m t_m \sum_{\langle ij \rangle,\sigma} 4S^x_{im\sigma}S^x_{jm\sigma}(f^{\dagger}_{im\sigma}f_{jm\sigma}+h.c) + H_{int}[S]$$

Mean-field approximation : - decoupling f and S - static and uniform Lagrange multiplier - local mean-field on S

Mean-field equations

(Half-filling, $\lambda_m = \varepsilon_m = \mu = 0$ slightly different off-half-filling)

$$\begin{split} H_{eff}^{f} &= \sum_{k,m\sigma} Z_{m} \varepsilon_{km} f_{km\sigma}^{\dagger} f_{km\sigma} \qquad H_{s} = \sum_{m\sigma} 2h_{m} S_{m\sigma}^{x} + H_{int} [\vec{S}_{m\sigma}] \\ h_{m} &= 4 \langle S_{m\sigma}^{x} \rangle \frac{1}{\mathcal{N}} \sum_{k} \varepsilon_{km} \langle f_{km}^{\dagger} f_{km} \rangle \qquad Z_{m} = 4 \langle S_{m\sigma}^{x} \rangle^{2} \\ \langle n_{im\sigma}^{f} \rangle &= \langle S_{im\sigma}^{z} \rangle + \frac{1}{2} \end{split}$$

Atomic limit: Coulomb staircase

Generalization off half-filling

 $d \rightarrow 2S^{x}f$ Is no longer a good choice (bad non-interacting limit) Good choice: 0.8 $d \rightarrow Sf$ 0.6 $S = cS^+ + S^-$ Ν 0.4 n=1.0 N 0.2 $c = \frac{1}{\sqrt{n(1-n)}} - 1$ 3.385 3.39 3.395 3.4 0 0 2 з 5 6 1 U/D

Coincident in one-band models with Slave Bosons mean-field (Gutzwiller approximation)

Comparison with similar techniques

Number of non-physical states in the enlarged Hilbert space: Slave Bosons: ∞ Slave Spin: finite Slave Rotors: ∞

Number of auxiliary variables: Slave Bosons: 2^{2N} Slave Spin: 2N Slave Rotors: 1 (only for totally degenerate systems)

Iron-based superconductors

Luca de' Medici

Iron-based superconductors

Luca de' Medici

Iron-based superconductors

Luca de' Medici

 $|\Delta|$ (meV)

2

Ding et al. EPL 2008

Gretarsson et al. PRL2013

Correlations in Iron SC?

weak

strong

Contrasting evidences for correlation strength

- no Mott insulator in the phase diagram
- no detection of prominent Hubbard bands
- moderate correlations from Optics
- bad metallicity
- strong sensitivity to doping
- local vs itinerant magnetism

Weak-coupling vs Strong-coupling scenarios

Fang et al. PRB80 (2009) Rullier-Albenque et al. PRL103 (2009)

Specific heat (mJ/ mol K ²)	
LaFePO	7
$Ba(Co_xFe_{1-x})_2As_2$	15-20
$Ba_{1-x}K_{x}Fe_{2}As_{2}$	50
FeSe _{0.88}	9.2
KFe_2As_2	69-102
$K_{0.8}Fe_{1.6}Se_2$	6

Review: Stewart, RMP (2011)

Modeling Iron-based superconductors: Hund's coupling

- cubic

- multi-orbital: 5 bands (Fe 3d) at the Fermi level n=6 conduction electrons
- Partially lifted degeneracy
- Not a very large U but strong <u>Hund's coupling J</u> W~4eV, U~2-4eV, J~0.5eV

Ba-122 Phase diagram

mass enhancements

LdM, G. Giovannetti, M. Capone, PRL 2014

Theory (LDA+Slave-spins)

Experimental data (high-T tetragonal phase)

Selective correlation strength: strongly and weakly correlated electrons

Many other theoretical works showing orbital-dependent correlations (DFT+..) : Ishida et al., Aichhorn et al., Shorikov et al., Craco, Laad et al., Werner et al., Yin et al., Backes et al. (DMFT), Misawa Imada (VQMC) Bascones et al. (Hartree-Fock), Ikeda et al. (FLEX), Yu Si (slave spins), Lanatà et al. (Gutzwiller), Calderon et al. (slave-spins), etc.

Correlations: experimental mass enhancements in Ba-122

mass enhancements

LdM, G. Giovannetti, M. Capone, PRL 2014

Theory (LDA+Slave-spins)

Experimental data (high-T tetragonal phase)

Selective correlation strength: strongly and weakly correlated electrons

Many other theoretical works showing orbital-dependent correlations (DFT+..) : Ishida et al., Aichhorn et al., Shorikov et al., Craco, Laad et al., Werner et al., Yin et al., Backes et al. (DMFT), Misawa Imada (VQMC) Bascones et al. (Hartree-Fock), Ikeda et al. (FLEX), Yu Si (slave spins), Lanatà et al. (Gutzwiller), Calderon et al. (slave-spins), etc.

week ending

12 JULY 2013

mass enhancements

LdM, G. Giovannetti, M. Capone, PRL 2014

Theory (LDA+Slave-spins)

PRL 111, 027002 (2013) PHYSICAL REVIEW LETTERS

Evidence of Strong Correlations and Coherence-Incoherence Crossover in the Iron Pnictide Superconductor KFe₂As₂

F. Hardy,^{1,*} A. E. Böhmer,¹ D. Aoki,^{2,3} P. Burger,¹ T. Wolf,¹ P. Schweiss,¹ R. Heid,¹ P. Adelmann,¹ Y. X. Yao,⁴ G. Kotliar,⁵ J. Schmalian,⁶ and C. Meingast¹
¹Karlsruher Institut für Technologie, Institut für Festkörperphysik, 76021 Karlsruhe, Germany ²INAC/SPSMS, CEA Grenoble, 38054 Grenoble, France ³IMR, Tohoku University, Oarai, Ibaraki 311-1313, Japan ⁴Ames Laboratory US-DOE, Ames, Iowa 50011, USA ⁵Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA ⁶Karlsruher Institut für Technologie, Institut für Theorie der Kondensierten Materie, 76128 Karlsruhe, Germany (Received 15 January 2013; published 9 July 2013)

Using resistivity, heat-capacity, thermal-expansion, and susceptibility measurements we study the normal-state behavior of KFe₂As₂. Both the Sommerfeld coefficient ($\gamma \approx 103 \text{ mJ mol}^{-1} \text{ K}^{-2}$) and the Pauli susceptibility ($\chi \approx 4 \times 10^{-4}$) are strongly enhanced, which confirm the existence of heavy quasiparticles inferred from previous de Haas–van Alphen and angle-resolved photoemission spectros-copy experiments. We discuss this large enhancement using a Gutzwiller slave-boson mean-field calculation, which shows the proximity of KFe₂As₂ to an orbital-selective Mott transition. The temperature dependence of the magnetic susceptibility and the thermal expansion provide strong experimental evidence for the existence of a coherence-incoherence crossover, similar to what is found in heavy fermion and ruthenate compounds, due to Hund's coupling between orbitals.

Heavy-fermionic behavior: theory vs experiment

 $Ba_{1-x}K_xFe_2As_2$

 AFe_2As_2 (A=K, Rb, Cs)

Experiments from Meingast's group in Karlsruhe. F. Hardy et al. unpublished

mass enhancements

LdM, G. Giovannetti, M. Capone, PRL 2014

Theory (LDA+Slave-spins)

Mott Gap: E(n+1)+E(n-1)-2E(n)

- half-filling: ~U+(N-1)J
- other filling: ~U-3J

```
LdM, PRB 83 (2011)
LdM, J. Mravlje, A. Georges, PRL 107 (2011)
```

For a review: "Strong Correlations from Hunds' Coupling" A. Georges, LdM, J. Mravlje, Ann Rev Cond. Mat. 4, 137 (2013)

Mott Gap: E(n+1)+E(n-1)-2E(n)

- half-filling: ~U+(N-1)J
- other filling: ~U-3J

```
LdM, PRB 83 (2011)
LdM, J. Mravlje, A. Georges, PRL 107 (2011)
```

For a review: "Strong Correlations from Hunds' Coupling" A. Georges, LdM, J. Mravlje, Ann Rev Cond. Mat. 4, 137 (2013)

Mott Gap: E(n+1)+E(n-1)-2E(n)

- half-filling: ~U+(N-1)J
- other filling: ~U-3J

LdM, PRB **83** (2011) LdM, J. Mravlje, A. Georges, PRL **107** (2011) For a review: "Strong Correlations from Hunds' Coupling" A. Georges, LdM, J. Mravlje, Ann Rev Cond. Mat. 4, 137 (2013)

Luca de' Medici

Hund's coupling and Orbital selectivity

LdM, S.R. Hassan, M. Capone, JSC 22, 535 (2009)

Orbital-selective Mott transition

•Coexisting itinerant and localized conduction electrons

- Metallic resistivity and free-moment magnetic response
- non Fermi-liquid physics of the intinerant electrons

Anisimov et al., Eur. Phys. J. B 25 (2002) Koga et al., Phys. Rev. Lett. 92 (2004) For a review:

M. Vojta J. Low Temp. Phys. 161 (2010)

J favors the OSMT

(OSMT is the extreme case. More generally J favors <u>a</u> <u>differentiation in the correlation</u> <u>strength for each orbital</u>)

Hund's coupling as an orbital decoupler

Hund's coupling suppresses the interorbital correlations, rendering the charge excitations in the different orbitals independent from one-another, i.e. acting as an <u>orbital-decoupler for</u> <u>Mott-physics</u>

LdM, S.R. Hassan, M. Capone, X. Dai, PRL**102** (2009) LdM, Phys. Rev. B **83** (2011) Werner and Millis, Phys. Rev. Lett. **99** (2007)

Selective Mottness in iron-SC: doped BaFe2As2 (DFT+SSpins)

Cuprates: Mottness

Comanac et al. Nat. Phys. 2008

'Mottness'

Spectrum of charge excitations

The proximity to a Mott state strongly affects the properties of a system:

- reduced metallicity (Z~x)
- mass enhancement

. . .

- transfer of spectral weight from low to high energy (e.g. in optical response)
- tendency towards magnetism

Cuprates: Pseudogap as Selective Mottness

DCA calculation from: Gull et al. Phys Rev. B 82, 155101 (2010)

Tentative common phase diagram for Cuprates and Iron-SC

When plotted against the average orbital doping the experimental phase diagram of iron-SC closely resembles the one for cuprates! (suppressing magnetism)

- a superconducting dome at 20% doping from a Mott insulator
- a phase with selective Mottness in between the two
- a good Fermi-liquid at higher dopings

	A. Hackl and M. Vojta, New J. Phys.11 (2009)
Is then selective Mottness	Kou et al. Europhys. Lett. 88 (2009)
important for supproveduativity?	Yin W-G et al. Phys. Rev. Lett. 105 (2010)
important for superconductivity:	You Y-Z et al., Phys. Rev. Lett.107 (2011)

Conclusions:

Iron superconductors: Hund's coupling J has a key-role in tuning correlations

- Overall coherence reduced. Mott transition at n=6 pushed far.
- Phase diagram dominated by Mott transition at n=5 (half-filling).
- Filling of the conduction bands is a key variable: correlations increase with hole doping
- J acts as an "orbital-decoupler": suppresses inter-orbital charge correlations and <u>favors orbital selective Mottness</u>

i.e. coexistence of **strongly** *and* **weakly correlated** electrons in most of the phase diagram (KFe2As2 heavy fermion)

Analogy with the pseudogap phase in the cuprates

A common phase diagram?

LdM, G. Giovannetti, M. Capone, PRL 112, 177001 (2014)

Perspective in book chapter:

LdM, "<u>Weak *and* strong correlations in Iron superconductors</u>", in "**Iron-based superconductivity**", Springer series in materials science, vol 211, pp409-441

LdM, S.R. Hassan, M. Capone, X. Dai, PRL **102**, 126401 (2009) LdM, S.R. Hassan, M. Capone, JSC **22**, 535 (2009) LdM, PRB **83**, 205112 (2011) A. Georges, LdM, J. Mravlje, Annual Reviews Cond. Mat. 4, 137 (2013) Slave-spins can be a useful guidance for heavier computational methods