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Basics of DF

* There exists an exact XC functional that yields
the exact ground-state energy and density.

» Semilocal approximations yield accurate
ground-state energies and (usually) densities
for weakly correlated systems.

« Condensed matter theorists usually care more
about

— Response properties

— Thermal properties, eg phase transitions
— More homogeneous systems



KS algorithm (standard)
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Mix old and Construct
new Vxc[n](r)
densities. (easy)

Find
n(r)=sum of
orbitals?

Solve KS
eqgns for
orbitals and
eigenvalues

LSU



|

Two opposite themes

« Part 1: Do DFT of lattice model
— Shows what DFT methods actually do
— Allows study of errors in very controlled situation
— Not clear which lessons can be taken back to real
space
* Part 2: Take lattice to continuum limit,
converging to real-space solution
— Real DFT approximations really tested.
— Use powerful ‘exact’ solvers to study many features
— Limited to 1d
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Part 1

DFT of a lattice
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This review explains the relationship between density functional theory and strongly
corrclated models using the simplest.possible example, the two-site Hubbard model.
The relati to ditional quantum chemis is included. Even in this elemen-
tary example‘ where the exact ground-state energy and site occupations can be found
analytically, there is much to be explained in terms of the underlying logic and aims
of Density Functional Theory. Although the usual solution is analytic, the density
functional is given only implicitly. We overcome this difficulty using the Levy-Lieb
construction to create a parametrization of the exact function with negligible errors. The
symmetric case is most commonly studied, but we find a rich variation in behavior by
including asymmetry, as strong correlation physics vies with charge-transfer effects. We
explore the behavior of the gap and the many-body Green f\\n(uon demon trating
the ‘failure’ of the Kohn-Sh: method to the . We perform
be r i of the ion and of the KS potenuals the
correlation kinetic energies, and the adiabatic connection. We test several approximate
functionals (restricted and unrestricted Hartree-Fock and Bethe Ansatz Local Density
Approximation) to show their successes and limitations. We also discuss and illustrate the
concept of the derivative discontinuity. Useful appendices include analytic expressions for
Density Fum-nmnl energy components, several limits of the exact functional (weak- and
st o , symmetric and asymmetric), the Kohn-Sham hopping energy functional
for 3 sltes various adiabatic connection results, proofs of exact conditions for this model,

and the origin of the Hubbard model from a minimal basis model for stretched Hs.

PACS numbers: 71.15.Mb, 71.10.Fd, 71.27.+a

1. INTRODUCTION

In condensed matter, the world of electronic structure
theory can be divided into two camps: the weakly and the
strongly correlated. Weakly correlated solids are almost
always treated with density-functional methods as a start-
ing point for ground-state properties(Burke, 2012; Burke
and Wagner, 2013; Capelle, 2006; Dreizler and Gross,
1990; Kohn, 1999). Many-body (MB) approximations
such as GW might then be applied to find properties of
the quasi-particle spectrum, such as the gap(Aryasetiawan
and Gunnarsson, 1998; Pollehn et al., 1998; Verdozzi et al.,
1995). This approach is ‘first-principles’, in the sense that
it uses the real-space Hamiltonian for the electrons in the
field of the nuclei, and produces a converged result that is
independent of the basis set, once a sufficiently large basis
set is used. Density functional theory (DFT) is known
to be exact in principle, but the usual approximations
often fail when correlations become strong(Cohen et al.,
2008b).

On the other hand, strongly correlated systems are most
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often treated via lattice Hamiltonians with relatively few
parameters(Dagotto, 1994; Korepin and Essler, 1994).
These simplified Hamiltonians can be easier to deal with,
especially when correlations are strong(Dagotto, 1994;
Essler et al., 1992). Even approximate solutions to such
Hamiltonians can yield insight into the physics, especially
for extended systems(Solovyev, 2008). However, such
Hamiltonians can rarely be unambiguously derived from
a first-principles starting point, making it difficult (if
not impossible) to say how accurate such solutions are
quantitatively or to improve on that accuracy. Moreover,
methods that yield approximate Green’s functions are
often more focused on response properties or thermal
properties rather than on total energies in the ground-
state.

On the other hand, the ground-state energy of electrons
plays a much more crucial role in chemical and material
science applications(Martin, 2004; Parr and Yang, 1989).
Very small energy differences determine geometries and
sometimes qualitative properties, such as the nature of a
transition state in a chemical reaction(Feller and Peterson,

Maybe
should be
called: The
many-body
theorists

companion
to DFT



[ Asymmetric 2-site Hubbard

Mott-Hubbard Charge-Transfer
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{ Ground-state energy (exact and RHF) }
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{ Correlation energy
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Density as a function of Av
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KS version
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Spectral function (sym,U=5)

Feb 13, 2015

12



[ Spectral function (Av=5,U=5)
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Ground-state energy in UHF
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Density for U=100
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[ Zoom in density (U=100)

—Exact
---RHF
---UHF
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[ Part II: Problems with DFT }

Density functional theory (DFT) is an

efficient method that works extremely

well for molecules and materials....
...except when it doesn’t

Derivative -
“ISLOMIHUIU
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Basic ingredients

Feb 13, 2015

Ideas for correcting these issues,
but how to test them? S_DFA

HSE 5 FTLDFT
GGA+U

To check if they work, and for the right
reasons, must give something up:

 Continuum
 Long-range interactions

A W Do =J .‘~»

———

LSU

Using an exact
numerical
solver for 1d
systems (known
as DMRG), we
can learn more
about density
functional
theory (DFT)
and find ways to
make it better
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{ Three levels of activity

Three levels of application to DFT: %\ﬁ

Level I: compare exact results to

@
DFT approximations
Level II: study the exact =
Kohn-Sham system
Level IlI: self-consistent KS 0
calculation with the

exact functional
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Example of long chains

DMRG powerful enough to solve a chain
of 100 stretched soft Hydrogen atoms

16

0.4,

0.3
2z 0.2+
5’ 0.1 / | | One-D/mens'/onal Cont'm'uum E/e‘ctron/c
o i Structure with the Density-Matrix
g 0L | /. | ! | I L. Renormalization Group and Its Implications
_§ 0.4 for Density-Functional Theory E.M.
E‘E | Stoudenmire, Lucas O. Wagner, Steven R.
ig‘ 03 White, Kieron Burke, Phys. Rev. Lett. 109,
~ 056402 (2012).
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Mott-Hubbard gap

« Classic prototype of

condensed matter °‘4§//
* Infinite chain of H atoms 30 ]
o o . ;;. AX = Exact[-A
* When lattice spacing is S o) o oEnKSGp
large, must be an & o :
insulator
« But with one electron ’ N
per Site , always a band FIG. 3(c.oloronlipe). Exaf:t gaps for chains of N soft hydrogen
atoms with atomic separation b = 4 (error bars are less than
m et a I symbol sizes). The upper curve is a quadratic fit of exact gaps of

the largest six systems and extrapolates to a finite value E, ~
0.33. The exact Kohn-Sham gaps, in contrast, extrapolate to zero
showing that for N — oo the true KS system is metallic (lower
curve is a linear fit of exat KS gaps of the largest six systems).
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Benchmark DFT calculations

Cite this: Phys. Chem. Chem. Phys., 2012, 14,8581-8590

WWW.rsc.org/pccp PAPE R

Reference electronic structure calculations in one dimensionfy

Lucas O. Wagner,** E. M. Stoudenmire,” Kieron Burke®® and Steven R. White”

Received 24th December 2011, Accepted 1st May 2012

DOI: 10.1039/c2cp24118h W

Large strongly correlated systems provide a challenge to modern electronic structure methods, £
because standard density functionals usually fail and traditional quantum chemical approaches

are too demanding. The density-matrix renormalization group method, an extremely powerful

tool for solving such systems, has recently been extended to handle long-range interactions on .
real-space grids, but is most efficient in one dimension where it can provide essentially arbitrary
accuracy. Such 1d systems therefore provide a theoretical laboratory for studying strong
correlation and developing density functional approximations to handle strong correlation, if they
mimic three-dimensional reality sufficiently closely. We demonstrate that this is the case, and
provide reference data for exact and standard approximate methods, for future use in this area.

Easier
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Possible problems with KS calculations for strongly
correlated systems

 Uniqueness of the KS potential
— No problem, because of HK

» Existence of KS potential

— Uniqueness does not guarantee existence, and
neither HK nor Levy/Lieb prove this.

— Always find it exists for all systems we've looked at.

* Convergence

— Even if a unique KS exists, what if you can never find
it?

— What if you get stuck in an endless limit cycle?

Feb 13, 2015 LSU 24



Interacting inversion (insanity)

* To find the purple
line:

s o o
ES [e)) oo
| | |

I I

Trial electron density
S
|
T

- Vg [n] (X)
v[n](x)

Inverted potentials

N i _ Solve full
| | Modify v(r) to Scﬁrgginuger

loser i
get closer to equation for

T
-4 0 4
X n(r) v(r)

FIG. 2. Arbitrary density inversion for non-interacting and
interacting potentials.

If close
enough to

n(r), output
v(r)
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Definitions

* n(r) is some given density

* n’(r) is output from one KS step

* A is a mixing parameter

* 1 is a measure of closeness of 2 densities
» AE is energy above true ground-state

ny(r) =1 — A)n(r) + An'(r),

. % [ P r(n(x) — ()2

Feb 13, 2015 LSU
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KS algorithm (with exact XC) ¢

Mix old and Construct
new Vxc[n](r)
densities.

Find
n(r)=sum of
H P
orbitals get closer to

Solve full
Schrodinger
equation for

v(r)

Modify v(r) to

Solve KS
egns for
orbitals and

. If cl
eigenvalues Wiy

enough to
n(r), output
v(r)
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Actual calculations

Sometimes with exact functional
Sometimes with LDA

Start from some well-defined density, often
chosen to be far from end point, e.g., H-
density centered at one nucleus, or pseudo
uniform density

Chose a fixed tolerance in 1 and a given A

Can always find finite A so that it converges to
ground state.



One KS step

FIG. 1 (color online). (a) The input and output densities for a
single step of the Kohn-Sham scheme, as well as the exact
density, of a one-dimensional, strongly correlated four atom,
four electron system. (b) The energy of the system which
interpolates between the input and output densities E,[n,],
measured from the ground-state energy E%’. Also shown is the

linear-response approximation with slope given by Eq. (12). Ul-] - energy of interpolated density
E — — linear response .
= _
&%
0 L - \|§ = I | L | L | L
0 0.2 0.4 0.6 0.8 1
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Convergence of chain
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~

KS potentials

FIG. 2 (color online). KS procedure for a moderately corre-
lated four-electron system (four hydrogen atoms with R = 3),
showing the first few iterations. Using a fixed A = 0.30, we
converge to 7 < 107 using Eq. (4) within 13 iterations.
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[ Proof of convergence }

. Lemma: j B r(w[n'](v) — v[n]®) /() — n(r) <O

* Oops: Already proven by Gritsenko and
Baerends (2005) — see our erratum.

« Consequence: take one step for some
— dE/dA always < 0 at ends of curve
— Guarantees a minimum
— Can prove always converges for A <A,
— Assume Hilbert space finite Guaratesd Convergence o te Kot S

Equations Lucas O. Wagner, E. M.
Stoudenmire, Kieron Burke, Steven R. White,
Phys. Rev. Lett. 111, 093003 (2013).
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Rate of convergence

5= % / & r(n'(x) — n(r))2.

ny(r) =1 — A)n(r) + An'(r),

Feb 13, 2015
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Convergence of the KS algorithm
H,molecule starting from H on one atom

0.06 T |
(@) R=1.6

& 0.04

0.02

AE and

0.2

0.1

2]

—¢ + a4 4
5 10
iteration

FIG. 3 (color online). Differences in the density 7 using
Eq. (4) and the energy with AE = E, [n'] — E}’, for an H,
molecule with (a) R = 1.6 and (b) R = 3. In (b), the AE curves
are omitted for clarity, but are like those in (a).
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PHYSICAL REVIEW B 90, 045109 (2014)

S

Kohn-Sham calculations with the exact functional

Lucas O. Wagner,?3 Thomas E. Baker,! E. M. Stoudenmire,'-* Kieron Burke,'> and Steven R. White!
'Department of Physics & Astronomy, University of California, Irvine, California 92697, USA
2Department of Chemistry, University of California, Irvine, California 92697, USA
3Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit,
De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
4 Perimeter Institute of Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5
(Received 5 May 2014; revised manuscript received 20 June 2014; published 9 July 2014)

As a proof of principle, self-consistent Kohn-Sham calculations are performed with the exact exchange-
correlation functional. Finding the exact functional for even one trial density requires solving the interacting
Schrodinger equation many times. The density matrix renormalization group method makes this possible for
one-dimensional, real-space systems of more than two interacting electrons. We illustrate and explore the
convergence properties of the exact KS scheme for both weakly and strongly correlated systems. We also explore

the spin-dependent generalizationrand dgnsities for which:tiigancti

Thomas E. Baker Lucas Wagner Miles Stoudenmire Steve White
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om’s original introduction
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Four score and seven years ago, our physics forebears
[1, 2] brought into this world a new theory, conceived
in simplicity, and dedicated to the proposition that al-
though all particles are waves [3], their density can be
simply calculated [1, 2]. Now we are engaged in a great
electronic structure debate, testing whether Kohn—Sham
theory [4], or any density functional theory [5] so con-
ceived and so dedicated, can endure in the face of strongly
correlated systems. We have come to dedicate a por-
tion of this paper, as a final convergence proof [6] for
those who have dedicated their lives to developing the
constrained search [7] and approximations thereto [8-10].
It is altogether fitting and proper that we should prove
this.

LSU
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KS steps when weakly correlated
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KS step from NI density KS step from PU density
0.8 —r—T—— —

(b)

0.8

0.03

002 —_ NI -
L -
= PU i
0.01 .
0 \
0.6 0.8 1

FIG. 6. A single step in the KS scheme for a weakly corre-
lated system (H4 with R = 2) away from two different initial
densities: non-interacting electrons in the external potential
(NI) and a pseudouniform electron density (PU). These initial
densities are the dashed curves in (a) and (b), and the solid
curves are the output densities for each KS step; for compar-
ison the dotted curve is the exact density. The lower panel
plots Eq. (22), the energy of the system as it interpolates from
the input to the output density.
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Single step for strong correlation
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KS step from NI density KS step from PU density
ST T ——

(b)

FIG. 7. A single step in the KS scheme for a strongly corre-
lated system (Hy4 with R = 4) away from two different initial
densities: non-interacting electrons in the external potential
(NI) and a pseudouniform electron density (PU). These initial
densities are the dashed curves in (a) and (b), and the solid
curves are the output densities for each KS step; for compar-
ison the dotted curve is the exact density. The lower panel
plots Eq. (22), the energy of the system as it interpolates from
the input to the output density.

LSU
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KS step when close to gs

KS step from near density

n(x)

021/ -
= /L e , e
=~ | /K —- P i
ﬁ I Eihinis N -
o1t % 0.1 02 -7 .
/ // ”’
u - ,
T -
=
-
0 o ‘ \ \
0 0.2 0.4 0.6 0.8 1
A

FIG. 8. Taking a second step in the KS scheme for a strongly
correlated system (Hy with R = 4). Panel (a) shows the
input density which is near to the exact density (the A = 42%
density of the NI input density of Fig. 7) and the resulting
output density, which is far from the ground-state. The lower
panel (b) plots Eq. (22), and the inset (c) magnifies the small
A region.
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No of iterations vs b
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FIG. 10. The number of iterations required to converge an
LDA calculation to n < 107® (12), as a function of ), for
various bond-lengths R of the Hy molecule, starting with an
initial density of H™ on the left atom. The asymptotic form
for small A\ can be well-approximated by 7/\ for the data
shown.
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Convergence vs bond length
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Convergence of LDA KS algorithm
0.8 T | T | T | T

_ + LDA critical A i
227 exp( -0.606 R )

O LDA KS gap —
— 0.81 exp(-0.570R)
i & exact KS gap

<
o)
[

KS gap and critical A
g
|
|

I
(S
[
|

1 | 1 | 1 1
02 3 4 5 6

R (bond length)

FIG. 11.  Plotting the convergence-critical A for an LDA
calculation, as a function of the bond length R of a stretched
hydrogen molecule, starting with the exact H™ density on one
atom, as well as KS gaps for both the LDA and exact systems.
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Summary

* Part I: See arXiv for Companion to DFT.

 Part Il: Have a new tool for studying KS DFT in
1d, especially good for strong correlation.
— Relies on efficiency of DMRG in 1d.
— Can get to thermodynamic limit.

— Have shown KS equations can always be made to
converge(with exact functional).

— Convergence slows with strength of correlation.

« Thanks to US DOE for funding.



