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Prototype of Strong/static  correlation 
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Basics of DFT 

•  There exists an exact XC functional that yields 
the exact ground-state energy and density. 

•  Semilocal approximations yield accurate 
ground-state energies and (usually) densities 
for weakly correlated systems. 

•  Condensed matter theorists usually care more 
about 
–  Response properties 
–  Thermal properties, eg phase transitions 
–  More homogeneous systems 

Feb	
  13,	
  2015	
   LSU	
   3	
  



KS algorithm (standard) 

Given	
  n(r)	
  

Construct	
  
Vxc[n](r)	
  
(easy)	
  

Construct	
  
vs[n](r)	
  

Solve	
  KS	
  
eqns	
  for	
  

orbitals	
  and	
  
eigenvalues	
  

Find	
  
n(r)=sum	
  of	
  
orbitals2	
  

Mix	
  old	
  and	
  
new	
  

densiYes.	
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Two opposite themes 

•  Part 1: Do DFT of lattice model 
–  Shows what DFT methods actually do 
–  Allows study of errors in very controlled situation 
–  Not clear which lessons can be taken back to real 

space 
•  Part 2: Take lattice to continuum limit, 

converging to real-space solution 
–  Real DFT approximations really tested. 
–  Use powerful ‘exact’ solvers to study many features 
–  Limited to 1d 
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Part 1:  DFT of a lattice 
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The Hubbard Dimer: A density functional case study of a many-body problem
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This review explains the relationship between density functional theory and strongly
correlated models using the simplest possible example, the two-site Hubbard model.
The relationship to traditional quantum chemistry is included. Even in this elemen-
tary example, where the exact ground-state energy and site occupations can be found
analytically, there is much to be explained in terms of the underlying logic and aims
of Density Functional Theory. Although the usual solution is analytic, the density
functional is given only implicitly. We overcome this di�culty using the Levy-Lieb
construction to create a parametrization of the exact function with negligible errors. The
symmetric case is most commonly studied, but we find a rich variation in behavior by
including asymmetry, as strong correlation physics vies with charge-transfer e↵ects. We
explore the behavior of the gap and the many-body Green’s function, demonstrating
the ‘failure’ of the Kohn-Sham method to reproduce the fundamental gap. We perform
benchmark calculations of the occupation and components of the KS potentials, the
correlation kinetic energies, and the adiabatic connection. We test several approximate
functionals (restricted and unrestricted Hartree-Fock and Bethe Ansatz Local Density
Approximation) to show their successes and limitations. We also discuss and illustrate the
concept of the derivative discontinuity. Useful appendices include analytic expressions for
Density Functional energy components, several limits of the exact functional (weak- and
strong-coupling, symmetric and asymmetric), the Kohn-Sham hopping energy functional
for 3 sites, various adiabatic connection results, proofs of exact conditions for this model,
and the origin of the Hubbard model from a minimal basis model for stretched H2.

PACS numbers: 71.15.Mb, 71.10.Fd, 71.27.+a

1. INTRODUCTION

In condensed matter, the world of electronic structure
theory can be divided into two camps: the weakly and the
strongly correlated. Weakly correlated solids are almost
always treated with density-functional methods as a start-
ing point for ground-state properties(Burke, 2012; Burke
and Wagner, 2013; Capelle, 2006; Dreizler and Gross,
1990; Kohn, 1999). Many-body (MB) approximations
such as GW might then be applied to find properties of
the quasi-particle spectrum, such as the gap(Aryasetiawan
and Gunnarsson, 1998; Pollehn et al., 1998; Verdozzi et al.,
1995). This approach is ‘first-principles’, in the sense that
it uses the real-space Hamiltonian for the electrons in the
field of the nuclei, and produces a converged result that is
independent of the basis set, once a su�ciently large basis
set is used. Density functional theory (DFT) is known
to be exact in principle, but the usual approximations
often fail when correlations become strong(Cohen et al.,
2008b).

On the other hand, strongly correlated systems are most

often treated via lattice Hamiltonians with relatively few
parameters(Dagotto, 1994; Korepin and Essler, 1994).
These simplified Hamiltonians can be easier to deal with,
especially when correlations are strong(Dagotto, 1994;
Essler et al., 1992). Even approximate solutions to such
Hamiltonians can yield insight into the physics, especially
for extended systems(Solovyev, 2008). However, such
Hamiltonians can rarely be unambiguously derived from
a first-principles starting point, making it di�cult (if
not impossible) to say how accurate such solutions are
quantitatively or to improve on that accuracy. Moreover,
methods that yield approximate Green’s functions are
often more focused on response properties or thermal
properties rather than on total energies in the ground-
state.

On the other hand, the ground-state energy of electrons
plays a much more crucial role in chemical and material
science applications(Martin, 2004; Parr and Yang, 1989).
Very small energy di↵erences determine geometries and
sometimes qualitative properties, such as the nature of a
transition state in a chemical reaction(Feller and Peterson,
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Asymmetric 2-site Hubbard 
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Ground-state energy (exact and RHF) 
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Correlation energy 
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Density as a function of Δv  
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KS version 
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Spectral function (sym,U=5) 
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Spectral function (Δv=5,U=5) 
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Ground-state energy in UHF 
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Prototype of Strong/static  correlation 
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Density for U=100 
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Zoom in density (U=100) 
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Part II: Problems with DFT 

Density functional theory (DFT) is an 
efficient method that works extremely 
well for molecules and materials....
                      ...except when it doesn’t

Strong Correlation

Predicting GapsDerivative 
Discontinuity

Transport
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Basic ingredients 

Ideas for correcting these issues,
but how to test them?

HSE

GGA+U
DMFT+DFT
S-DFA

To check if they work, and for the right 
reasons, must give something up:

• Continuum
• Long-range interactions
• Three Dimensions
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Using	
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Three levels of activity 

Three levels of application to DFT:

Level I: compare exact results to   
            DFT approximations

Level II: study the exact 
             Kohn-Sham system

Level III: self-consistent KS
              calculation with the
              exact functional
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Example of long chains 
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Three levels of application to DFT:

Level I: compare exact results to   
            DFT approximations

Level II: study the exact 
             Kohn-Sham system

Level III: self-consistent KS
              calculation with the
              exact functional
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Mott-Hubbard gap 

•  Classic prototype of 
condensed matter 

•  Infinite chain of H atoms 
•  When lattice spacing is 

large, must be an 
insulator 

•  But with one electron 
per site, always a band 
metal 

interacting system, the KS system is the unique noninter-
acting system with the same density [20].) In the thermo-
dynamic limit, the KS gaps extrapolate to zero, so that
the exact N ! 1 KS system is a metal. This is consistent
with the fact that each finite KS system in Fig. 3 has one
electron per unit cell and thus a half-filled band (in contrast
to the unrestricted LSDAwhich breaks spin symmetry for
this system).

The discrepancy between the KS and exact gap was long
ago identified [21] with the exchange-correlation deriva-
tive discontinuity in DFT: Eg ¼ !s þ !XC, where !s is
the KS gap, that is, the energy difference between the
lowest unoccupied and highest occupied orbitals of the
neutral KS system. Approximate functionals such as
LSDA that are continuous in particle number miss this
effect entirely. The LSDA KS gaps are almost identical
to the exact ones shown in Fig. 3, but the LSDA funda-
mental gap drops from close to Eg for small N to near zero
at large N (details reported elsewhere).

Previous calculations have found !XC for semiconduc-
tors [22,23] with finite KS gaps !s, but our system’s gap is
entirely due to !XC, underscoring its importance for strong
correlation physics. Our results rely on no uncontrolled
approximations and so demonstrate unambiguously the
behavior of Mott insulators in DFT. Present DFT research
on this issue focuses on extracting accurate Eg from semi-
local functional calculations [24,25].

The onset of strong correlation with increasing bond
length is often identified with the Coulson-Fischer point
[26], where an unrestricted Hartree-Fock calculation spon-
taneously breaks spin symmetry. A different way to dis-
tinguish strong from weak correlation is through the
entanglement spectrum, readily accessible in DMRG.

Defining the left reduced density matrix !L¼TrRj"ih"j,
where the trace is over all grid sites in the right half of the
system, the entanglement spectrum consists of the energies
of the entanglement Hamiltonian HE ¼ # ln!L [27]. The
most probable density matrix eigenstates are those in the
low ‘‘energy’’ part of the spectrum. By classifying these
states according to their particle numberNL, we can under-
stand the dominant quantum fluctuations of the ground
state. Figure 4 shows the entanglement spectrum at the
center of a series of four-atom chains with increasing
interatomic separation. A sharp crossover at b ’ 5:5, where
the probability for charge fluctuations drops below that
of pure spin fluctuations, signals the onset of strongly
correlated behavior.
Many oxide materials of current interest are too strongly

correlated for present DFT methods, but crucial properties
must be calculated to an accuracy far beyond that of simple
model Hamiltonians. The method described here provides
a new, alternative route to studying strongly correlated
systems. All existing approximations, from heuristic cor-
rections to standard functionals, such as LDAþ U [28], to
methods developed for lattice models, such as dynamical
mean field theory [29], can be applied and tested more
easily, thoroughly, and accurately in the present setting.
Because our 1D world captures a feature crucial to density
functional approximations, namely, the continuum instead
of a lattice, such studies should provide the insight needed
to construct more accurate density functionals for real
strongly correlated materials.
We gratefully acknowledge DOE Grant No. DE-FG02-

08ER46496 (K. B., L. O.W., and S. R.W.) and NSF Grant
No. DMR-0907500 (E.M. S. and S. R.W.) for supporting
this work.
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symbol sizes). The upper curve is a quadratic fit of exact gaps of
the largest six systems and extrapolates to a finite value Eg ’
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showing that for N ! 1 the true KS system is metallic (lower
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Three levels of application to DFT:

Level I: compare exact results to   
            DFT approximations

Level II: study the exact 
             Kohn-Sham system

Level III: self-consistent KS
              calculation with the
              exact functional
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Benchmark DFT calculations 
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Reference electronic structure calculations in one dimensionw

Lucas O. Wagner,*a E. M. Stoudenmire,a Kieron Burkeab and Steven R. Whitea
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Large strongly correlated systems provide a challenge to modern electronic structure methods,

because standard density functionals usually fail and traditional quantum chemical approaches

are too demanding. The density-matrix renormalization group method, an extremely powerful

tool for solving such systems, has recently been extended to handle long-range interactions on

real-space grids, but is most efficient in one dimension where it can provide essentially arbitrary

accuracy. Such 1d systems therefore provide a theoretical laboratory for studying strong

correlation and developing density functional approximations to handle strong correlation, if they

mimic three-dimensional reality sufficiently closely. We demonstrate that this is the case, and

provide reference data for exact and standard approximate methods, for future use in this area.

1 Introduction and philosophy

Electronic structure methods such as density functional theory
(DFT) are excellent tools for investigating the properties of
solids and molecules—except when they are not. Standard
density functional approximations in the Kohn–Sham (KS)
framework1 work well in the weakly correlated regime,2–4

but these same approximations can fail miserably when the
electrons become strongly correlated.5 A burning issue in
practical materials science today is the desire to develop
approximate density functionals that work well, even for strong
correlation. This has been emphasized in the work of Cohen
et al.,5,6 where even the simplest molecules, H2 and H2

+, exhibit
features essential to strong correlation when stretched.

Many approximate methods, both within and beyond DFT,
are currently being developed for tackling these problems,
such as the HSE06 functional7 or the dynamical mean-field
theory.8 Their efficacy is usually judged by comparison with
experiment over a range of materials, especially in calculating
gaps and predicting correct magnetic phases. But such com-
parisons are statistical and often mired in controversy, due to
the complexity of extended systems.

In molecular systems, there is now a large variety of tradi-
tional (ab initio) methods for solving the Schrödinger equation
with high accuracy, so approximate methods can be bench-
marked against highly-accurate results, at least for small
molecules.9Most suchmethods have not yet been reliably adopted
for extended systems, where quantum Monte Carlo (QMC)10 has

become one of the few ways to provide theoretical benchmarks.11

But QMC is largely limited to the ground state and is still
relatively expensive. Much more powerful and efficient is the
density-matrix renormalization group (DMRG),12–14 which has
scored some impressive successes in extended systems,15 but
whose efficiency is greatest in one-dimensional systems.
A possible way forward is therefore to study simpler systems,

defined only in one dimension, as a theoretical laboratory for
understanding strong correlation. In fact, there is a long history
of doing just this, but using lattice Hamiltonians such as the
Hubbard model.16 While such methods do yield insight into
strong correlation, such lattice models differ too strongly from
real-space models to learn much that can be directly applied to
DFT of real systems. However, DMRG has recently been
extended to treat long-range interactions in real space.17 This
then begs the question: are one-dimensional analogs sufficiently
similar to their three-dimensional counterparts to allow us to
learn anything about real DFT for real systems?
In this paper, we show that the answer is definitively yes by

carefully and precisely calculating many exact and approxi-
mate properties of small systems. We use DMRG for the exact
calculations and the one-dimensional local-density approxi-
mation for the DFT calculations.18 In passing, we establish
many precise reference values for future calculations. Of
course, the exact calculations could be performed with any
traditional method for such small systems, but DMRG is
ideally suited to this problem, and will in the future be used
to handle 1d systems too correlated for even the gold-standard
of ab initio quantum chemistry, CCSD(T).
Thus our purpose here is not to understand real chemistry,

which is intrinsically three dimensional, but rather to check
that our 1d theoretical laboratory is qualitatively close enough
to teach us lessons about handling strong correlation with
electronic structure theories, especially density functional
theory.

aDepartment of Physics and Astronomy, University of California,
Irvine, CA 92697, USA. E-mail: lwagner@uci.edu

bDepartment of Chemistry, University of California, Irvine,
CA 92697, USA

w This article was submitted as part of a Themed Issue on fragment and
localized orbital methods in electronic structure theory. Other papers on
this topic can be found in issue 21 of vol. 14 (2012). This issue can be
found from the PCCP homepage [http://www.rsc.org/pccp].
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Three levels of application to DFT:

Level I: compare exact results to   
            DFT approximations

Level II: study the exact 
             Kohn-Sham system

Level III: self-consistent KS
              calculation with the
              exact functional
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Possible problems with KS calculations for strongly 
correlated systems 

•  Uniqueness of the KS potential 
–  No problem, because of HK 

•  Existence of KS potential 
–  Uniqueness does not guarantee existence, and 

neither HK nor Levy/Lieb prove this. 
–  Always find it exists for all systems we’ve looked at. 

•  Convergence 
–  Even if a unique KS exists, what if you can never find 

it? 
–  What if you get stuck in an endless limit cycle? 
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Interacting inversion (insanity) 
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FIG. 2. Arbitrary density inversion for non-interacting and
interacting potentials.

vS[n](r) and orbitals �
j

(r), we can evaluate functionals
such as TS[n] using Eq. (8).

Interacting inversions are rarely done, since they are
far more expensive than non-interacting inversions, and
require solving the many-body problem many times.
Only two-electron problems have been studied, in one
case to understand the adiabatic approximation within
TDDFT [24, 25] and in another to study the self-
interaction error within LDA [4]; though we have recently
studied four-electron systems [29]. The potential v[n](r),
which corresponds to the interacting system of electrons
with density n(r), can be found using the same algorithm
as for vS[n](r), though in step 1 we must solve an in-
teracting problem for the many-body wavefunction  (i)

rather than the non-interacting Schrödinger equation for

orbitals �
(i)

j

(r). At the end of the inversion we obtain
 [n], the wavefunction which minimizes F [n] in Eq. (4),
allowing us to compute F [n] for that specific density.

To illustrate the theory behind KS-DFT, we solve in-
teracting systems using the density matrix renormaliza-
tion group (DMRG) [26, 27], which is the most e�-
cient wavefunction solver in 1d, capable of handling both
strong and weak correlation. We apply DMRG to model
1d continuum systems by discretizing space into N

g

grid
points with a small grid spacing � [23, 45]. With this
method, we can invert 1d systems with over 100 elec-
trons [45]. For our model systems we employ a softened
Coulomb interaction between electrons [23, 24, 45–47]:

v
ee

(u) = 1/
p

u2 + 1. (14)

Figure 2 shows a four-electron example of an interact-
ing inversion [48]. For some arbitrary density like this
one (meaning a density we would not find in nature), we
want to find the associated KS and interacting poten-
tials. This is the problem we encounter during the self-
consistent calculation of the KS equations. Since we ulti-

mately find  [n] at the end of the inversion, we can evalu-
ate F [n] (given soft-Coulomb interactions); likewise with
�
j

(r) we can obtain TS[n]. For the example density of
Fig. 2 we find F [n] = 3.07, TS[n] = 0.843, U [n] = 3.628,
so EXC[n] = �1.397. The XC energy is thus calculated
using simple energy di↵erences; and we obtain the XC
potential in the same way. We further describe these
matters in the next section.
To close this section, we describe our recipe for step

3 of the inversion algorithm. The idea is to build an
approximation for the density-density response matrix,
�, which determines how a small change in the potential
will change the density:

Z
d3r0 �(r, r0) �v(r0) = �n(r). (15)

Restricting our attention to 1d, we recast this equation
as the matrix equation � �v = �n, where � is an (un-
known) N

g

⇥ N
g

matrix, and �v, �n are vectors with
N

g

components, where N
g

is the number of grid-sites
in the system. A constant change in the potential (i.e.
�v = c

1

) will give zero change in the density (�n = 0),
and a constant change in the density (�n = c

2

) is impossi-
ble, since N is fixed. Therefore we consider orthonormal
basis functions for changes in the potential and density
which integrate to zero, encoded as columns in the ma-
trices W and M , respectively [49]. Within this basis, the
density-density response matrix can be approximated by
a smaller matrix, A:

� ⇡ MAWT . (16)

This factorization of the matrix � looks very much like
(and is inspired by) the singular value decomposition
(SVD) of �, which would give an exact breakdown of
� into optimal bases M and W , with A being diagonal.
We do not know � a priori, but an approximation to �
(or A) can be iteratively improved using a quasi-Newton
method (we use Broyden’s method [50]). We construct
appropriate basis vectors for M and W using orthonor-
malized di↵erences of trial densities from the target den-
sity. As A is refined, the bases M and W can be opti-
mized (if desired) by computing the SVD of A, a pro-
cedure which is also useful to compute A�1, and thus
��1. The next trial potential for step 3 is determined
by: v(i+1) = v(i) + ��1(n � n(i)). Typically around 20
basis vectors in M and W are required to obtain a trial
density indistinguishable from the target density on the
scale of Fig. 2.

IV. RESULTS

We have now su�cient machinery to calculate the ex-
act exchange-correlation energy and potential for any
trial density, as encountered in the KS scheme. For con-
venience, we write EHXC[n] = U [n] + EXC[n], which can
be evaluated (using Eqs. (4) and (7)) as:

EHXC[n] = h [n]|{T̂ + V̂
ee

}| [n]i � TS[n]. (17)

•  To find the purple 
line: 
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Definitions 

•  n(r) is some given density 
•  n’(r) is output from one KS step 
•  λ is a mixing parameter 
•  η is a measure of closeness of 2 densities 
•  ΔE is energy above true ground-state 
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negative as in Fig. 1(b), we show there is always a linear
combination of the input and output densities that lowers
the energy. By sufficiently damping each KS step, the
energy is always reduced each iteration, yielding the
ground-state density and energy to within a given tolerance
in a finite number of iterations.

The KS algorithm is designed to minimize the energy as
a functional of the electron density nðrÞ. For an N-electron
system with a reasonable [21] external potential vðrÞ, the
energy functional is [1]

Ev½n$ ¼ TS½n$ þ
Z

d3rnðrÞvðrÞ þ EHXC½n$; (1)

where TS½n$ is the kinetic energy of noninteracting (NI)
electrons having density nðrÞ, and EHXC½n$ is the Hartree-
exchange-correlation (HXC) energy [22,23]. The KS equa-
tions are, in atomic units,

' 1

2
r2!jðrÞþ ðvðrÞþvHXC½n$ðrÞÞ!jðrÞ ¼ "j!jðrÞ; (2)

where vHXC½n$ðrÞ ¼ #EHXC½n$=#nðrÞ is the HXC poten-
tial, !jðrÞ are the electron orbitals, and "j are their eigen-
values. (In this work, we consider spin-unpolarized systems
for simplicity.) An output density n0ðrÞ is found by doubly
occupying the lowest-energy orbitals

n0ðrÞ ¼ 2
X1

j¼1

fjj!jðrÞj2; (3)

where 0 ( fj ( 1 and
P

jfj ¼ N=2. Fractional occupation
is only allowed for the highest occupied orbitals if they are
degenerate, where fj is chosen to minimize the difference
between nðrÞ and n0ðrÞ [24].

Consider convergence of the following simple algo-
rithm. Given an input density nðrÞ, solve the KS equations
to obtain the output density n0ðrÞ. Define

$ ) 1

N2

Z
d3rðn0ðrÞ ' nðrÞÞ2: (4)

Choose some small #> 0, and if $< #, then the calcu-
lation has converged. Otherwise, the next input is

n%ðrÞ ¼ ð1' %ÞnðrÞ þ %n0ðrÞ; (5)

for some %2ð0;1$, and repeat. An ensemble-v-representable
nðrÞ is the ground-state density (or an ensemble mixture of
degenerate ground-state densities) for some local potential
v½n$ðrÞ [26,27]. For NI electrons, this potential is vS½n$ðrÞ.
We call nðrÞ physical when both potentials exist, and we
require all n%ðrÞ to be physical. We refer to a single iteration
of Eqs. (2)–(5) as one step of the KS algorithm. Taking
full steps with % ¼ 1 does not usually lead to a fixed point.
But taking damped steps with %< 1 ensures the algorithm
converges, as we now prove.

Lemma.—Consider two finite [28] systems of N elec-
trons, with ground-state densities nðrÞ, n0ðrÞ, and potentials
v½n$ðrÞ ! v½n0$ðrÞ, by which we mean the potentials differ
by more than a constant. Then [9]

Z
d3rðv½n0$ðrÞ ' v½n$ðrÞÞðn0ðrÞ ' nðrÞÞ< 0: (6)

Proof.—Following Ref. [9], we apply the variational
principle. Since nðrÞ is the ground-state density of the
potential v½n$ðrÞ, we have Ev½n$½n$< Ev½n$½n0$, or

Z
d3rv½n$ðrÞðnðrÞ ' n0ðrÞÞ<F½n0$ ' F½n$; (7)

where F½n$ ) TS½n$ þ EHXC½n$. It is also true that
Ev½n0$½n0$< Ev½n0$½n$, so we may switch primes with
unprimes in Eq. (7). Adding the resulting equation to the
original yields Eq. (6). j
Note that the lemma is true for any interaction between

electrons, including none.
Theorem.—Given an arbitrary physical density nðrÞ as

input into the KS algorithm,

E0
v½n$ )

dEv½n%$
d%

!!!!!!!!%¼0
( 0; (8)

where n%ðrÞ is defined as in Eq. (5). If equality holds, then
nðrÞ is a stationary point of Ev½n$.
Proof.—Consider !Ev resulting from %!nðrÞ )

%ðn0ðrÞ ' nðrÞÞ ¼ n%ðrÞ ' nðrÞ. Then

E0
v½n$ ¼

Z
d3r

#Ev½n$
#nðrÞ !nðrÞ: (9)

For a physical density, the functional derivative is [27]

#Ev½n$
#nðrÞ ¼ 'vS½n$ðrÞ þ vðrÞ þ vHXC½n$ðrÞ: (10)

Since vðrÞ þ vHXC½n$ðrÞ defines vS½n0$ðrÞ [n0ðrÞ is the
output density of Eq. (2)], we have

#Ev½n$
#nðrÞ ¼ vS½n0$ðrÞ ' vS½n$ðrÞ: (11)

Combining Eqs. (11) and (9) gives

E0
v½n$ ¼

Z
d3rðvS½n0$ðrÞ ' vS½n$ðrÞÞðn0ðrÞ ' nðrÞÞ: (12)

Two cases arise: if vS½n0$ðrÞ ! vS½n$ðrÞ, use the lemma
applied to NI systems: then E0

v½n$ must be less than zero.
Otherwise, vS½n0$ðrÞ ¼ vS½n$ðrÞ, so both E0

v½n$ and the
rhs of Eq. (11) are zero, and nðrÞ is a stationary point
of Ev½n$. j
We illustrate the theorem in Fig. 1(b), where we plot

Ev½n%$ and its linear-response approximation for the input
density of Fig. 1(a).
Corollary 1.—The KS algorithm described above is

guaranteed to converge to a stationary point of the func-
tional, if (1) only physical densities are encountered,
(2) the energy functional is convex, and (3) appropriate
values for % are used, e.g., from the algorithm of Ref. [29],
because it is effectively a gradient-descent algorithm [30].
Corollary 2.—When using the exact functional, the KS

algorithm using appropriate %’s converges to the exact
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Three levels of application to DFT:

Level I: compare exact results to   
            DFT approximations

Level II: study the exact 
             Kohn-Sham system

Level III: self-consistent KS
              calculation with the
              exact functional
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Actual calculations 

•  Sometimes with exact functional 
•  Sometimes with LDA 
•  Start from some well-defined density, often 

chosen to be far from end point, e.g., H- 
density centered at one nucleus, or pseudo 
uniform density 

•  Chose a fixed tolerance in  η  and a given  λ  
•  Can always find finite  λ  so that it converges to 

ground state. 
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One KS step 

Guaranteed Convergence of the Kohn-Sham Equations
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A sufficiently damped iteration of the Kohn-Sham (KS) equations with the exact functional is proven to

always converge to the true ground-state density, regardless of the initial density or the strength of electron

correlation, for finite Coulomb systems.We numerically implement the exact functional for one-dimensional

continuum systems and demonstrate convergence of the damped KS algorithm. More strongly correlated

systems converge more slowly.
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Kohn-Sham density functional theory (KS-DFT) [1]
is a widely applied electronic structure method. Standard
approximate functionals yield accurate ground-state energies
and electron densities for many systems of interest [2], but
often failwhen electrons are strongly correlated.Ground-state
properties can be qualitatively incorrect [3], and convergence
can be very slow [4,5]. To remedy this, several popular
schemes augment Kohn-Sham theory, such as LDAþ U
[6]. Others seek to improve approximate functionals [7]
within the original formulation. But what if the exact func-
tional does not exist for strongly correlated systems? Even
if it does, what if the method fails to converge? Either plight
would render KS-DFT useless for strongly correlated sys-
tems, and render fruitless the vast efforts currently underway
to treat, e.g., oxide materials [8], with KS-DFT.

The Kohn-Sham (KS) approach employs a fictitious
system of noninteracting electrons, defined to have the
same density as the interacting system of interest. The
potential characterizing this KS system is unique if it exists
[9]. Because the KS potential is a functional of the density,
in practice one must search for the density and KS potential
together using an iterative, self-consistent scheme [10].
The converged density is in principle the ground-state
density of the original, interacting system, whose ground-
state energy is a functional of this density.

Motivated by concerns of convergence and existence,
we have been performing KS calculations with the exact
functional for one-dimensional (1D) continuum systems
[11,12]. Even when correlations are strong, we never find
a density whose KS potential does not exist, consistent
with the results of Ref. [13]. Nor do we find any system
where the KS scheme does not converge, although con-
vergence can slow by orders of magnitude as correlation is
increased, just as in approximate calculations [4,5].

Exact statements about the unknown density functional
inform the construction of all successful density functional
theory (DFT) approximations [14–17]. More importantly,
they distinguish between what a KS-DFT calculation can
possibly do, and what it cannot. Themost notorious example
is the demonstration that theKS band gap of a semiconductor

does not equal the true charge gap, even when the exact
functional is used [11,18]. Our key result is an analytic proof
that a simple algorithm guarantees convergence of the
KS equations for all systems, weakly or strongly correlated,
independent of the starting point. Thus multiple stationary
points and failures to converge are artifacts of approximate
functionals. Studies of convergence are well known in
applied mathematics, but almost all concern simple approx-
imations, such as LDA [19], Hartree-Fock [20], etc., and not
those in current use in many calculations.
The basic idea lies in a single step of the KS scheme,

which proceeds from an input density to produce an output
density. For a strongly correlated system as in Fig. 1(a),
the output density can differ strongly from the input
density, and be further from the true ground-state density.
Nevertheless, by proving that the initial slope is always
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FIG. 1 (color online). (a) The input and output densities for a
single step of the Kohn-Sham scheme, as well as the exact
density, of a one-dimensional, strongly correlated four atom,
four electron system. (b) The energy of the system which
interpolates between the input and output densities Ev½n!$,
measured from the ground-state energy Egs

v . Also shown is the
linear-response approximation with slope given by Eq. (12).
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Convergence of chain 

ground-state density, as long as the first input density is a
physical density. This is because we can choose each
subsequent input density as a physical density [31], and
the exact ensemble functional [22,33] is convex. The only
stationary point of the exact functional, when considering
physical densities, is the ground-state density [34].

Numerical implementation.—To find the KS energy
functional exactly when there is no degeneracy, we must
find the many-electron wave function!½n" that minimizes
h!jT̂ þ V̂eej!i (the kinetic and electron-electron repul-
sion energies) with density nðrÞ [22,35]. To perform this
very demanding [36] interacting inversion, start with a
guess for the potential ~vðrÞ. Then solve the many-body
system for the ground-state wave function ~! and density
~nðrÞ. Using a quasi-Newton method [37], modify ~vðrÞ and
repeat, minimizing the difference between ~nðrÞ and the
target density nðrÞ. Once converged, the procedure is
repeated for NI electrons. The HXC energy is then

EHXC½n" ¼ h!½n"jT̂ þ V̂eej!½n"i' TS½n"; (13)

and the HXC potential is

vHXC½n"ðrÞ ¼ vS½n"ðrÞ ' v½n"ðrÞ: (14)

We implement these functionals for 1D continuum systems
[11,12], obtaining highly accurate many-body solutions
with the density matrix renormalization group [38,39].
These are the first such inversions for systems with more
than two electrons [40,41]. Because, in one dimension,
degeneracy (beyond spin) does not occur, we find pure
states !½n". More generally, one should invert using an
ensemble "½n" and take a trace in Eq. (13) [22,33].

To illustrate convergence of the damped KS algorithm
using the exact functional, we plot the output densities
and KS potentials for a four-electron, four-atom system
in Fig. 2. We choose the interatomic spacing R ¼ 3 to be

roughly twice the equilibrium spacing of H2 (when the
interaction between nuclei is the same as that between
electrons), making this a moderately correlated system.
Taking ! ¼ 0:30, the algorithm converges to the exact
density (computed separately using DMRG) to "< 10'6

using Eq. (4), within 13 steps.
Consider the KS scheme applied to a simple 1D H2

molecule with bond length R [12]. Initialize the algorithm
with an asymmetric input density, aH' density centered on
the left atom. Of course, no sensible KS calculation starts
with such a density, but we do this to amplify convergence
issues. In Fig. 3, we quantify the convergence of the KS
algorithm using " from Eq. (4) as well as energy differ-
ences from the ground state. For the equilibrium bond
length (R ¼ 1:6), ! may be chosen quite large (( 0:5),
but as the atoms are stretched to R ¼ 3, ! must be & 0:2.
When R ¼ 5, even ! ¼ 0:01 is too large to converge the
calculation (not shown). Thus, as the bond is stretched and
the system develops strong static correlation [12], conver-
gence becomes increasingly difficult. As more atoms are
added to the chain (not shown), such as stretched H4, even
a reasonable initial state converges very slowly.
Consequences for real calculations.—For approximate

XC functionals, the corresponding Ev½n" is not, in general,
convex for every vðrÞ, and our corollaries do not hold.
Consider H2 in the local spin-density approximation.
At and near equilibrium bond lengths, only one stationary
solution exists. The approximate functional may or may
not be convex. But when the bond is stretched beyond the
infamous Coulson-Fischer point [42,43], an unrestricted
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FIG. 2 (color online). KS procedure for a moderately corre-
lated four-electron system (four hydrogen atoms with R ¼ 3),
showing the first few iterations. Using a fixed ! ¼ 0:30, we
converge to "< 10'6 using Eq. (4) within 13 iterations.
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FIG. 3 (color online). Differences in the density " using
Eq. (4) and the energy with #E ¼ Ev½n0" ' Egs

v , for an H2

molecule with (a) R ¼ 1:6 and (b) R ¼ 3. In (b), the #E curves
are omitted for clarity, but are like those in (a).
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•  Lemma:  

•  Oops: Already proven by Gritsenko and 
Baerends (2005) – see our erratum. 

•  Consequence:  take one step for some  
–  dE/dλ always < 0 at ends of curve 
–  Guarantees a minimum 
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negative as in Fig. 1(b), we show there is always a linear
combination of the input and output densities that lowers
the energy. By sufficiently damping each KS step, the
energy is always reduced each iteration, yielding the
ground-state density and energy to within a given tolerance
in a finite number of iterations.

The KS algorithm is designed to minimize the energy as
a functional of the electron density nðrÞ. For an N-electron
system with a reasonable [21] external potential vðrÞ, the
energy functional is [1]

Ev½n$ ¼ TS½n$ þ
Z

d3rnðrÞvðrÞ þ EHXC½n$; (1)

where TS½n$ is the kinetic energy of noninteracting (NI)
electrons having density nðrÞ, and EHXC½n$ is the Hartree-
exchange-correlation (HXC) energy [22,23]. The KS equa-
tions are, in atomic units,

' 1

2
r2!jðrÞþ ðvðrÞþvHXC½n$ðrÞÞ!jðrÞ ¼ "j!jðrÞ; (2)

where vHXC½n$ðrÞ ¼ #EHXC½n$=#nðrÞ is the HXC poten-
tial, !jðrÞ are the electron orbitals, and "j are their eigen-
values. (In this work, we consider spin-unpolarized systems
for simplicity.) An output density n0ðrÞ is found by doubly
occupying the lowest-energy orbitals

n0ðrÞ ¼ 2
X1

j¼1

fjj!jðrÞj2; (3)

where 0 ( fj ( 1 and
P

jfj ¼ N=2. Fractional occupation
is only allowed for the highest occupied orbitals if they are
degenerate, where fj is chosen to minimize the difference
between nðrÞ and n0ðrÞ [24].

Consider convergence of the following simple algo-
rithm. Given an input density nðrÞ, solve the KS equations
to obtain the output density n0ðrÞ. Define

$ ) 1

N2

Z
d3rðn0ðrÞ ' nðrÞÞ2: (4)

Choose some small #> 0, and if $< #, then the calcu-
lation has converged. Otherwise, the next input is

n%ðrÞ ¼ ð1' %ÞnðrÞ þ %n0ðrÞ; (5)

for some %2ð0;1$, and repeat. An ensemble-v-representable
nðrÞ is the ground-state density (or an ensemble mixture of
degenerate ground-state densities) for some local potential
v½n$ðrÞ [26,27]. For NI electrons, this potential is vS½n$ðrÞ.
We call nðrÞ physical when both potentials exist, and we
require all n%ðrÞ to be physical. We refer to a single iteration
of Eqs. (2)–(5) as one step of the KS algorithm. Taking
full steps with % ¼ 1 does not usually lead to a fixed point.
But taking damped steps with %< 1 ensures the algorithm
converges, as we now prove.

Lemma.—Consider two finite [28] systems of N elec-
trons, with ground-state densities nðrÞ, n0ðrÞ, and potentials
v½n$ðrÞ ! v½n0$ðrÞ, by which we mean the potentials differ
by more than a constant. Then [9]

Z
d3rðv½n0$ðrÞ ' v½n$ðrÞÞðn0ðrÞ ' nðrÞÞ< 0: (6)

Proof.—Following Ref. [9], we apply the variational
principle. Since nðrÞ is the ground-state density of the
potential v½n$ðrÞ, we have Ev½n$½n$< Ev½n$½n0$, or

Z
d3rv½n$ðrÞðnðrÞ ' n0ðrÞÞ<F½n0$ ' F½n$; (7)

where F½n$ ) TS½n$ þ EHXC½n$. It is also true that
Ev½n0$½n0$< Ev½n0$½n$, so we may switch primes with
unprimes in Eq. (7). Adding the resulting equation to the
original yields Eq. (6). j
Note that the lemma is true for any interaction between

electrons, including none.
Theorem.—Given an arbitrary physical density nðrÞ as

input into the KS algorithm,

E0
v½n$ )

dEv½n%$
d%

!!!!!!!!%¼0
( 0; (8)

where n%ðrÞ is defined as in Eq. (5). If equality holds, then
nðrÞ is a stationary point of Ev½n$.
Proof.—Consider !Ev resulting from %!nðrÞ )

%ðn0ðrÞ ' nðrÞÞ ¼ n%ðrÞ ' nðrÞ. Then

E0
v½n$ ¼

Z
d3r

#Ev½n$
#nðrÞ !nðrÞ: (9)

For a physical density, the functional derivative is [27]

#Ev½n$
#nðrÞ ¼ 'vS½n$ðrÞ þ vðrÞ þ vHXC½n$ðrÞ: (10)

Since vðrÞ þ vHXC½n$ðrÞ defines vS½n0$ðrÞ [n0ðrÞ is the
output density of Eq. (2)], we have

#Ev½n$
#nðrÞ ¼ vS½n0$ðrÞ ' vS½n$ðrÞ: (11)

Combining Eqs. (11) and (9) gives

E0
v½n$ ¼

Z
d3rðvS½n0$ðrÞ ' vS½n$ðrÞÞðn0ðrÞ ' nðrÞÞ: (12)

Two cases arise: if vS½n0$ðrÞ ! vS½n$ðrÞ, use the lemma
applied to NI systems: then E0

v½n$ must be less than zero.
Otherwise, vS½n0$ðrÞ ¼ vS½n$ðrÞ, so both E0

v½n$ and the
rhs of Eq. (11) are zero, and nðrÞ is a stationary point
of Ev½n$. j
We illustrate the theorem in Fig. 1(b), where we plot

Ev½n%$ and its linear-response approximation for the input
density of Fig. 1(a).
Corollary 1.—The KS algorithm described above is

guaranteed to converge to a stationary point of the func-
tional, if (1) only physical densities are encountered,
(2) the energy functional is convex, and (3) appropriate
values for % are used, e.g., from the algorithm of Ref. [29],
because it is effectively a gradient-descent algorithm [30].
Corollary 2.—When using the exact functional, the KS

algorithm using appropriate %’s converges to the exact
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Rate of convergence 

ground-state density, as long as the first input density is a
physical density. This is because we can choose each
subsequent input density as a physical density [31], and
the exact ensemble functional [22,33] is convex. The only
stationary point of the exact functional, when considering
physical densities, is the ground-state density [34].

Numerical implementation.—To find the KS energy
functional exactly when there is no degeneracy, we must
find the many-electron wave function!½n" that minimizes
h!jT̂ þ V̂eej!i (the kinetic and electron-electron repul-
sion energies) with density nðrÞ [22,35]. To perform this
very demanding [36] interacting inversion, start with a
guess for the potential ~vðrÞ. Then solve the many-body
system for the ground-state wave function ~! and density
~nðrÞ. Using a quasi-Newton method [37], modify ~vðrÞ and
repeat, minimizing the difference between ~nðrÞ and the
target density nðrÞ. Once converged, the procedure is
repeated for NI electrons. The HXC energy is then

EHXC½n" ¼ h!½n"jT̂ þ V̂eej!½n"i' TS½n"; (13)

and the HXC potential is

vHXC½n"ðrÞ ¼ vS½n"ðrÞ ' v½n"ðrÞ: (14)

We implement these functionals for 1D continuum systems
[11,12], obtaining highly accurate many-body solutions
with the density matrix renormalization group [38,39].
These are the first such inversions for systems with more
than two electrons [40,41]. Because, in one dimension,
degeneracy (beyond spin) does not occur, we find pure
states !½n". More generally, one should invert using an
ensemble "½n" and take a trace in Eq. (13) [22,33].

To illustrate convergence of the damped KS algorithm
using the exact functional, we plot the output densities
and KS potentials for a four-electron, four-atom system
in Fig. 2. We choose the interatomic spacing R ¼ 3 to be

roughly twice the equilibrium spacing of H2 (when the
interaction between nuclei is the same as that between
electrons), making this a moderately correlated system.
Taking ! ¼ 0:30, the algorithm converges to the exact
density (computed separately using DMRG) to "< 10'6

using Eq. (4), within 13 steps.
Consider the KS scheme applied to a simple 1D H2

molecule with bond length R [12]. Initialize the algorithm
with an asymmetric input density, aH' density centered on
the left atom. Of course, no sensible KS calculation starts
with such a density, but we do this to amplify convergence
issues. In Fig. 3, we quantify the convergence of the KS
algorithm using " from Eq. (4) as well as energy differ-
ences from the ground state. For the equilibrium bond
length (R ¼ 1:6), ! may be chosen quite large (( 0:5),
but as the atoms are stretched to R ¼ 3, ! must be & 0:2.
When R ¼ 5, even ! ¼ 0:01 is too large to converge the
calculation (not shown). Thus, as the bond is stretched and
the system develops strong static correlation [12], conver-
gence becomes increasingly difficult. As more atoms are
added to the chain (not shown), such as stretched H4, even
a reasonable initial state converges very slowly.
Consequences for real calculations.—For approximate

XC functionals, the corresponding Ev½n" is not, in general,
convex for every vðrÞ, and our corollaries do not hold.
Consider H2 in the local spin-density approximation.
At and near equilibrium bond lengths, only one stationary
solution exists. The approximate functional may or may
not be convex. But when the bond is stretched beyond the
infamous Coulson-Fischer point [42,43], an unrestricted
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FIG. 2 (color online). KS procedure for a moderately corre-
lated four-electron system (four hydrogen atoms with R ¼ 3),
showing the first few iterations. Using a fixed ! ¼ 0:30, we
converge to "< 10'6 using Eq. (4) within 13 iterations.
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FIG. 3 (color online). Differences in the density " using
Eq. (4) and the energy with #E ¼ Ev½n0" ' Egs

v , for an H2

molecule with (a) R ¼ 1:6 and (b) R ¼ 3. In (b), the #E curves
are omitted for clarity, but are like those in (a).
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negative as in Fig. 1(b), we show there is always a linear
combination of the input and output densities that lowers
the energy. By sufficiently damping each KS step, the
energy is always reduced each iteration, yielding the
ground-state density and energy to within a given tolerance
in a finite number of iterations.

The KS algorithm is designed to minimize the energy as
a functional of the electron density nðrÞ. For an N-electron
system with a reasonable [21] external potential vðrÞ, the
energy functional is [1]

Ev½n$ ¼ TS½n$ þ
Z

d3rnðrÞvðrÞ þ EHXC½n$; (1)

where TS½n$ is the kinetic energy of noninteracting (NI)
electrons having density nðrÞ, and EHXC½n$ is the Hartree-
exchange-correlation (HXC) energy [22,23]. The KS equa-
tions are, in atomic units,

' 1

2
r2!jðrÞþ ðvðrÞþvHXC½n$ðrÞÞ!jðrÞ ¼ "j!jðrÞ; (2)

where vHXC½n$ðrÞ ¼ #EHXC½n$=#nðrÞ is the HXC poten-
tial, !jðrÞ are the electron orbitals, and "j are their eigen-
values. (In this work, we consider spin-unpolarized systems
for simplicity.) An output density n0ðrÞ is found by doubly
occupying the lowest-energy orbitals

n0ðrÞ ¼ 2
X1

j¼1

fjj!jðrÞj2; (3)

where 0 ( fj ( 1 and
P

jfj ¼ N=2. Fractional occupation
is only allowed for the highest occupied orbitals if they are
degenerate, where fj is chosen to minimize the difference
between nðrÞ and n0ðrÞ [24].

Consider convergence of the following simple algo-
rithm. Given an input density nðrÞ, solve the KS equations
to obtain the output density n0ðrÞ. Define

$ ) 1

N2

Z
d3rðn0ðrÞ ' nðrÞÞ2: (4)

Choose some small #> 0, and if $< #, then the calcu-
lation has converged. Otherwise, the next input is

n%ðrÞ ¼ ð1' %ÞnðrÞ þ %n0ðrÞ; (5)

for some %2ð0;1$, and repeat. An ensemble-v-representable
nðrÞ is the ground-state density (or an ensemble mixture of
degenerate ground-state densities) for some local potential
v½n$ðrÞ [26,27]. For NI electrons, this potential is vS½n$ðrÞ.
We call nðrÞ physical when both potentials exist, and we
require all n%ðrÞ to be physical. We refer to a single iteration
of Eqs. (2)–(5) as one step of the KS algorithm. Taking
full steps with % ¼ 1 does not usually lead to a fixed point.
But taking damped steps with %< 1 ensures the algorithm
converges, as we now prove.

Lemma.—Consider two finite [28] systems of N elec-
trons, with ground-state densities nðrÞ, n0ðrÞ, and potentials
v½n$ðrÞ ! v½n0$ðrÞ, by which we mean the potentials differ
by more than a constant. Then [9]

Z
d3rðv½n0$ðrÞ ' v½n$ðrÞÞðn0ðrÞ ' nðrÞÞ< 0: (6)

Proof.—Following Ref. [9], we apply the variational
principle. Since nðrÞ is the ground-state density of the
potential v½n$ðrÞ, we have Ev½n$½n$< Ev½n$½n0$, or

Z
d3rv½n$ðrÞðnðrÞ ' n0ðrÞÞ<F½n0$ ' F½n$; (7)

where F½n$ ) TS½n$ þ EHXC½n$. It is also true that
Ev½n0$½n0$< Ev½n0$½n$, so we may switch primes with
unprimes in Eq. (7). Adding the resulting equation to the
original yields Eq. (6). j
Note that the lemma is true for any interaction between

electrons, including none.
Theorem.—Given an arbitrary physical density nðrÞ as

input into the KS algorithm,

E0
v½n$ )

dEv½n%$
d%

!!!!!!!!%¼0
( 0; (8)

where n%ðrÞ is defined as in Eq. (5). If equality holds, then
nðrÞ is a stationary point of Ev½n$.
Proof.—Consider !Ev resulting from %!nðrÞ )

%ðn0ðrÞ ' nðrÞÞ ¼ n%ðrÞ ' nðrÞ. Then

E0
v½n$ ¼

Z
d3r

#Ev½n$
#nðrÞ !nðrÞ: (9)

For a physical density, the functional derivative is [27]

#Ev½n$
#nðrÞ ¼ 'vS½n$ðrÞ þ vðrÞ þ vHXC½n$ðrÞ: (10)

Since vðrÞ þ vHXC½n$ðrÞ defines vS½n0$ðrÞ [n0ðrÞ is the
output density of Eq. (2)], we have

#Ev½n$
#nðrÞ ¼ vS½n0$ðrÞ ' vS½n$ðrÞ: (11)

Combining Eqs. (11) and (9) gives

E0
v½n$ ¼

Z
d3rðvS½n0$ðrÞ ' vS½n$ðrÞÞðn0ðrÞ ' nðrÞÞ: (12)

Two cases arise: if vS½n0$ðrÞ ! vS½n$ðrÞ, use the lemma
applied to NI systems: then E0

v½n$ must be less than zero.
Otherwise, vS½n0$ðrÞ ¼ vS½n$ðrÞ, so both E0

v½n$ and the
rhs of Eq. (11) are zero, and nðrÞ is a stationary point
of Ev½n$. j
We illustrate the theorem in Fig. 1(b), where we plot

Ev½n%$ and its linear-response approximation for the input
density of Fig. 1(a).
Corollary 1.—The KS algorithm described above is

guaranteed to converge to a stationary point of the func-
tional, if (1) only physical densities are encountered,
(2) the energy functional is convex, and (3) appropriate
values for % are used, e.g., from the algorithm of Ref. [29],
because it is effectively a gradient-descent algorithm [30].
Corollary 2.—When using the exact functional, the KS

algorithm using appropriate %’s converges to the exact
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negative as in Fig. 1(b), we show there is always a linear
combination of the input and output densities that lowers
the energy. By sufficiently damping each KS step, the
energy is always reduced each iteration, yielding the
ground-state density and energy to within a given tolerance
in a finite number of iterations.

The KS algorithm is designed to minimize the energy as
a functional of the electron density nðrÞ. For an N-electron
system with a reasonable [21] external potential vðrÞ, the
energy functional is [1]

Ev½n$ ¼ TS½n$ þ
Z

d3rnðrÞvðrÞ þ EHXC½n$; (1)

where TS½n$ is the kinetic energy of noninteracting (NI)
electrons having density nðrÞ, and EHXC½n$ is the Hartree-
exchange-correlation (HXC) energy [22,23]. The KS equa-
tions are, in atomic units,

' 1

2
r2!jðrÞþ ðvðrÞþvHXC½n$ðrÞÞ!jðrÞ ¼ "j!jðrÞ; (2)

where vHXC½n$ðrÞ ¼ #EHXC½n$=#nðrÞ is the HXC poten-
tial, !jðrÞ are the electron orbitals, and "j are their eigen-
values. (In this work, we consider spin-unpolarized systems
for simplicity.) An output density n0ðrÞ is found by doubly
occupying the lowest-energy orbitals

n0ðrÞ ¼ 2
X1

j¼1

fjj!jðrÞj2; (3)

where 0 ( fj ( 1 and
P

jfj ¼ N=2. Fractional occupation
is only allowed for the highest occupied orbitals if they are
degenerate, where fj is chosen to minimize the difference
between nðrÞ and n0ðrÞ [24].

Consider convergence of the following simple algo-
rithm. Given an input density nðrÞ, solve the KS equations
to obtain the output density n0ðrÞ. Define

$ ) 1

N2

Z
d3rðn0ðrÞ ' nðrÞÞ2: (4)

Choose some small #> 0, and if $< #, then the calcu-
lation has converged. Otherwise, the next input is

n%ðrÞ ¼ ð1' %ÞnðrÞ þ %n0ðrÞ; (5)

for some %2ð0;1$, and repeat. An ensemble-v-representable
nðrÞ is the ground-state density (or an ensemble mixture of
degenerate ground-state densities) for some local potential
v½n$ðrÞ [26,27]. For NI electrons, this potential is vS½n$ðrÞ.
We call nðrÞ physical when both potentials exist, and we
require all n%ðrÞ to be physical. We refer to a single iteration
of Eqs. (2)–(5) as one step of the KS algorithm. Taking
full steps with % ¼ 1 does not usually lead to a fixed point.
But taking damped steps with %< 1 ensures the algorithm
converges, as we now prove.

Lemma.—Consider two finite [28] systems of N elec-
trons, with ground-state densities nðrÞ, n0ðrÞ, and potentials
v½n$ðrÞ ! v½n0$ðrÞ, by which we mean the potentials differ
by more than a constant. Then [9]

Z
d3rðv½n0$ðrÞ ' v½n$ðrÞÞðn0ðrÞ ' nðrÞÞ< 0: (6)

Proof.—Following Ref. [9], we apply the variational
principle. Since nðrÞ is the ground-state density of the
potential v½n$ðrÞ, we have Ev½n$½n$< Ev½n$½n0$, or

Z
d3rv½n$ðrÞðnðrÞ ' n0ðrÞÞ<F½n0$ ' F½n$; (7)

where F½n$ ) TS½n$ þ EHXC½n$. It is also true that
Ev½n0$½n0$< Ev½n0$½n$, so we may switch primes with
unprimes in Eq. (7). Adding the resulting equation to the
original yields Eq. (6). j
Note that the lemma is true for any interaction between

electrons, including none.
Theorem.—Given an arbitrary physical density nðrÞ as

input into the KS algorithm,

E0
v½n$ )

dEv½n%$
d%

!!!!!!!!%¼0
( 0; (8)

where n%ðrÞ is defined as in Eq. (5). If equality holds, then
nðrÞ is a stationary point of Ev½n$.
Proof.—Consider !Ev resulting from %!nðrÞ )

%ðn0ðrÞ ' nðrÞÞ ¼ n%ðrÞ ' nðrÞ. Then

E0
v½n$ ¼

Z
d3r

#Ev½n$
#nðrÞ !nðrÞ: (9)

For a physical density, the functional derivative is [27]

#Ev½n$
#nðrÞ ¼ 'vS½n$ðrÞ þ vðrÞ þ vHXC½n$ðrÞ: (10)

Since vðrÞ þ vHXC½n$ðrÞ defines vS½n0$ðrÞ [n0ðrÞ is the
output density of Eq. (2)], we have

#Ev½n$
#nðrÞ ¼ vS½n0$ðrÞ ' vS½n$ðrÞ: (11)

Combining Eqs. (11) and (9) gives

E0
v½n$ ¼

Z
d3rðvS½n0$ðrÞ ' vS½n$ðrÞÞðn0ðrÞ ' nðrÞÞ: (12)

Two cases arise: if vS½n0$ðrÞ ! vS½n$ðrÞ, use the lemma
applied to NI systems: then E0

v½n$ must be less than zero.
Otherwise, vS½n0$ðrÞ ¼ vS½n$ðrÞ, so both E0

v½n$ and the
rhs of Eq. (11) are zero, and nðrÞ is a stationary point
of Ev½n$. j
We illustrate the theorem in Fig. 1(b), where we plot

Ev½n%$ and its linear-response approximation for the input
density of Fig. 1(a).
Corollary 1.—The KS algorithm described above is

guaranteed to converge to a stationary point of the func-
tional, if (1) only physical densities are encountered,
(2) the energy functional is convex, and (3) appropriate
values for % are used, e.g., from the algorithm of Ref. [29],
because it is effectively a gradient-descent algorithm [30].
Corollary 2.—When using the exact functional, the KS

algorithm using appropriate %’s converges to the exact
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Kohn-Sham calculations with the exact functional
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As a proof of principle, self-consistent Kohn-Sham calculations are performed with the exact exchange-
correlation functional. Finding the exact functional for even one trial density requires solving the interacting
Schrödinger equation many times. The density matrix renormalization group method makes this possible for
one-dimensional, real-space systems of more than two interacting electrons. We illustrate and explore the
convergence properties of the exact KS scheme for both weakly and strongly correlated systems. We also explore
the spin-dependent generalization and densities for which the functional is ill defined.
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I. INTRODUCTION

Eighty-seven years ago, the authors of [1,2] conceived
of a simple theory saying that, although all particles are
waves [3], their densities can be simply calculated [1,2].
Now the community is engaged in a great electronic structure
debate, testing whether Kohn-Sham theory [4], or any density
functional theory [5], can work properly for strongly correlated
systems. A portion of this paper discusses a final convergence
proof [6] and will be of interest to those who have worked to
develop the constrained search [7] and similar approximations
[8–10] so that the ground state can be found.

Kohn-Sham (KS) [4] density functional theory (DFT) is
now a widely used electronic structure method, attaining
useful accuracy with present approximations [11]. The method
finds the ground-state energy of a many-electron, interacting
system by solving an effective noninteracting problem. This
noninteracting problem must be solved self-consistently, be-
cause its potential (the KS potential) is a functional of the
electron density. The most vital piece of this KS potential is
derived from the mysterious exchange-correlation functional,
which can be computed exactly with great cost [12,13]. This
exact functional provides the formal foundations of KS DFT
for all electronic systems (with some caveats) [7]. However,
the utility of KS DFT derives from simple and computa-
tionally efficient approximations to the exchange-correlation
(XC) energy [8–10], which can be surprisingly reliable and
usefully accurate for broad classes of systems, yet fail badly
for others.

Traditionally, study of the exact XC energy functional
focused on finding general exact properties that can either
be built into approximations or used to understand their
failures [10,14–16]. In studying the exact theory, we learn
what is and is not reproduced by the exact functional, e.g.
that the highest occupied molecular orbital–lowest unoccupied
molecular orbital (HOMO-LUMO) gap of the KS system is not
equal to the fundamental (charge) gap of the system [17,18].
As computational power and algorithms evolved, it also
became possible to take a highly accurate solution of the
Schrödinger equation, extract the ground-state density, and
find the exact KS potential for the system of interest, notably

for few-electron systems [19–28]. These inversions are often
quite demanding, since all quantities must be sufficiently
accurate to extract the small differences in energies and
potentials that form the various components of exchange and
correlation.

However, even such heroic efforts do not produce a way of
solving the KS equations with the exact XC functional. This
is because, in an actual KS calculation, the XC functional is
needed not just for the ground-state density of the system to be
solved, but for a sequence of trial densities that ultimately
converges to the solution for that problem. To find the
XC functional for some trial density, one must solve the
Schrödinger equation for the potential for which that density
is the ground state, for both interacting and noninteracting
electrons. Worse still, these potentials are a priori unknown.
Advancing just one step in the KS calculations thus requires
solving many interacting electronic problems in order to find
the right potential that yields the trial density. We call this an
interacting inversion, and previous examples have been limited
to two electrons [13,29,30].

In this paper, we detail how to find the exact XC functional
for realistic models of electrons in one dimension. By realistic,
we mean models whose properties mimic those of real systems
and whose treatment with approximate density functionals
yields results similar to those for real systems [28]. We use
the density matrix renormalization group [31–33] to solve the
Schrödinger equation, because of its tremendous efficiency
for one-dimensional (1D) systems. In Ref. [6], we used this
capability to explore the convergence of a simple algorithm
for the KS scheme, ultimately proving that, no matter how
strongly correlated, convergence can always be achieved in a
finite number of iterations. Various approximate functionals
have their own convergence proofs [34,35], but here we detail
exactly how the exact calculations are done and test further
properties of the exact functional.

II. BACKGROUND

Typical solid-state and quantum chemistry investiga-
tions into electronic structure begin with the nonrelativistic
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I. INTRODUCTION

Four score and seven years ago, our physics forebears
[1, 2] brought into this world a new theory, conceived
in simplicity, and dedicated to the proposition that al-
though all particles are waves [3], their density can be
simply calculated [1, 2]. Now we are engaged in a great
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electronic structure debate, testing whether Kohn–Sham
theory [4], or any density functional theory [5] so con-
ceived and so dedicated, can endure in the face of strongly
correlated systems. We have come to dedicate a por-
tion of this paper, as a final convergence proof [6] for
those who have dedicated their lives to developing the
constrained search [7] and approximations thereto [8–10].
It is altogether fitting and proper that we should prove
this.

Kohn–Sham (KS) [4] density functional theory (DFT)
is now a widely used electronic structure method, at-
taining useful accuracy with present approximations [11].
The method finds the ground-state energy of a many-
electron, interacting system by solving an e↵ective non-
interacting problem. This non-interacting problem must
be solved self-consistently, because its potential (the KS
potential) is a functional of the electron density. The
most vital piece of this KS potential is derived from the
mysterious exchange-correlation functional, which can be
computed exactly with great cost [12, 13]. This exact
functional provides the formal foundations of KS-DFT
for all electronic systems (with some caveats) [7]. How-
ever, the utility of KS-DFT derives from simple and com-
putationally e�cient approximations to the exchange-
correlation (XC) energy [8–10] which can be surprisingly
reliable and usefully accurate for broad classes of systems,
yet fail badly for others.

Traditionally, study of the exact XC energy functional
focused on finding general exact properties that can ei-
ther be built into approximations, or used to understand
their failures [10, 14–16]. In studying the exact theory,
we learn what is and is not reproduced by the exact func-
tional; e.g. that the HOMO-LUMO gap of the KS sys-
tem is not equal to the fundamental (charge) gap of the
system [17, 18]. As computational power and algorithms
evolved, it also became possible to take a highly accurate
solution of the Schrödinger equation, extract the ground-
state density, and find the exact KS potential for the
system of interest, notably for few electron systems [19–
28]. These inversions are often quite demanding, since
all quantities must be su�ciently accurate to extract the
small di↵erences in energies and potentials that form the
various components of exchange and correlation.

But even such heroic e↵orts do not produce a way of
solving the KS equations with the exact XC functional.
This is because, in an actual KS calculation, the XC
functional is needed not just for the ground-state den-
sity of the system to be solved, but for a sequence of
trial densities that ultimately converges to the solution
for that problem. To find the XC functional for some
trial density, one must solve the Schrödinger equation
for the potential for which that density is the ground
state, both for interacting and non-interacting electrons.
Worse still, these potentials are a priori unknown. Ad-
vancing just one step in the KS calculations thus requires
solving many interacting electronic problems in order to
find the right potential that yields the trial density. We
call this an interacting inversion, and previous examples

have been limited to 2 electrons [13, 29, 30].
In this paper, we detail how to find the exact XC func-

tional for realistic models of electrons in one dimension.
By realistic, we mean models whose properties mimic
those of real systems, and whose treatment with approxi-
mate density functionals yields results similar to those for
real systems [28]. We use the density matrix renormal-
ization group [31–33] to solve the Schrödinger equation,
because of its tremendous e�ciency for one-dimensional
(1d) systems. In Ref. [6], we used this capability to ex-
plore the convergence of a simple algorithm for the KS
scheme, ultimately proving that, no matter how strongly
correlated, convergence can always be achieved in a finite
number of iterations. Various approximate functionals
have their own convergence proofs [34, 35], but here we
detail exactly how the exact calculations are done, and
test further properties of the exact functional.

II. BACKGROUND

Typical solid state and quantum chemistry in-
vestigations into electronic structure begin with the
non-relativistic continuum Hamiltonian in the Born–
Oppenheimer approximation,

Ĥ ⌘ T̂ + V̂ + V̂
ee

(1)

⌘
NX

i=1

✓
�1

2
r2

i + v(ri)

◆
+

1

2

NX

i 6=j

1

|ri � rj |
,

which describes the quantum behavior of N electrons in
an external potential v(r) determined by the (classical)
nuclei via the operators: the electron kinetic energy T̂ ,
their potential energy V̂ , and the electron-electron inter-
action V̂

ee

. The eigenstates  j and eigenvalues Ej (the

energies) of the Hamiltonian Ĥ determine all the prop-
erties of the system.
Despite Eq. (1) being the key to everyday electronic

structure, an accurate solution for even the ground-state
energy E and wavefunction  is not presently tractable
for large molecules. This problem continues to inspire
the development of new approximations and methods to
solve the many-body problem. Some methods—such as
Hartree–Fock theory [36], quantumMonte Carlo [37], and
coupled cluster [36]—attempt to approximate, sample, or
construct the wavefunction. Density functional theory,
on the other hand, approaches the many-body problem
quite di↵erently.
While  allows one to characterize the system com-

pletely, the much simpler ground-state electron density
n(r) was proven by Hohenberg and Kohn (HK) to also
determine all the properties of the system [5]. Their the-
orem allows us to formally work with the density as the
basic variable instead of the wavefunction [7]. The key-
stone of this far-reaching proof is the one-to-one corre-
spondence between the ground-state density n(r) and the
potential v(r) of a system, which characterizes the system
completely. This one-to-one mapping will be explored in



KS steps when weakly correlated 
7

0 0.2 0.4 0.6 0.8 1
λ

0

0.01

0.02

0.03

∆
E

(λ
) NI

PU

-8 -4 0 4 8
x

0

0.4

0.8

KS step from PU density

-8 -4 0 4 8
x

0

0.4

0.8

n
(x

)

KS step from NI density

(a) (b)

(c)

FIG. 6. A single step in the KS scheme for a weakly corre-
lated system (H

4

with R = 2) away from two di↵erent initial
densities: non-interacting electrons in the external potential
(NI) and a pseudouniform electron density (PU). These initial
densities are the dashed curves in (a) and (b), and the solid
curves are the output densities for each KS step; for compar-
ison the dotted curve is the exact density. The lower panel
plots Eq. (22), the energy of the system as it interpolates from
the input to the output density.
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4

with R = 4) away from two di↵erent initial
densities: non-interacting electrons in the external potential
(NI) and a pseudouniform electron density (PU). These initial
densities are the dashed curves in (a) and (b), and the solid
curves are the output densities for each KS step; for compar-
ison the dotted curve is the exact density. The lower panel
plots Eq. (22), the energy of the system as it interpolates from
the input to the output density.
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FIG. 8. Taking a second step in the KS scheme for a strongly
correlated system (H

4

with R = 4). Panel (a) shows the
input density which is near to the exact density (the � = 42%
density of the NI input density of Fig. 7) and the resulting
output density, which is far from the ground-state. The lower
panel (b) plots Eq. (22), and the inset (c) magnifies the small
� region.

of � = 42% as input into the KS equations. For the
weakly correlated system of Fig. 6, the second KS step
(not show) looks much like the first step, though with a
much smaller energy scale involved. Thus a fairly large
� may be used when correlations are weak, and conver-
gence is rapid. But it is not the same for the strongly
correlated system. As shown in Fig. 8, the next itera-
tion of the KS procedure will not allow us to make the
same giant stride as in the first iteration. For the new
�-mixed density, we again evaluate �E(�) from Eq. (22)
and find that it reaches a minimum much sooner. Thus
a much smaller �—around 6% as seen in the inset—must
be chosen in order not to go far o↵ track. Furthermore,
choosing even the optimal � does not result in a much
better energy as it did in the first iteration. This makes
convergence a long and di�cult process, since we can
only a↵ord to take small steps.

C. Why convergence is di�cult for strongly
correlated systems

In this this section, we discuss the ultimate reason
why convergence is di�cult for strongly correlated sys-
tems, and mention some algorithms which counteract
the underlying problem. Fundamentally, systems with
strong static correlation possess a small gap [], which
in turn makes convergence di�cult [54]. We can under-
stand this di�culty by considerings the non-interacting
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FIG. 8. Taking a second step in the KS scheme for a strongly
correlated system (H

4

with R = 4). Panel (a) shows the
input density which is near to the exact density (the � = 42%
density of the NI input density of Fig. 7) and the resulting
output density, which is far from the ground-state. The lower
panel (b) plots Eq. (22), and the inset (c) magnifies the small
� region.

of � = 42% as input into the KS equations. For the
weakly correlated system of Fig. 6, the second KS step
(not show) looks much like the first step, though with a
much smaller energy scale involved. Thus a fairly large
� may be used when correlations are weak, and conver-
gence is rapid. But it is not the same for the strongly
correlated system. As shown in Fig. 8, the next itera-
tion of the KS procedure will not allow us to make the
same giant stride as in the first iteration. For the new
�-mixed density, we again evaluate �E(�) from Eq. (22)
and find that it reaches a minimum much sooner. Thus
a much smaller �—around 6% as seen in the inset—must
be chosen in order not to go far o↵ track. Furthermore,
choosing even the optimal � does not result in a much
better energy as it did in the first iteration. This makes
convergence a long and di�cult process, since we can
only a↵ord to take small steps.

C. Why convergence is di�cult for strongly
correlated systems

In this this section, we discuss the ultimate reason
why convergence is di�cult for strongly correlated sys-
tems, and mention some algorithms which counteract
the underlying problem. Fundamentally, systems with
strong static correlation possess a small gap [], which
in turn makes convergence di�cult [54]. We can under-
stand this di�culty by considerings the non-interacting
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FIG. 8. Taking a second step in the KS scheme for a strongly
correlated system (H

4

with R = 4). Panel (a) shows the
input density which is near to the exact density (the � = 42%
density of the NI input density of Fig. 7) and the resulting
output density, which is far from the ground-state. The lower
panel (b) plots Eq. (22), and the inset (c) magnifies the small
� region.

of � = 42% as input into the KS equations. For the
weakly correlated system of Fig. 6, the second KS step
(not show) looks much like the first step, though with a
much smaller energy scale involved. Thus a fairly large
� may be used when correlations are weak, and conver-
gence is rapid. But it is not the same for the strongly
correlated system. As shown in Fig. 8, the next itera-
tion of the KS procedure will not allow us to make the
same giant stride as in the first iteration. For the new
�-mixed density, we again evaluate �E(�) from Eq. (22)
and find that it reaches a minimum much sooner. Thus
a much smaller �—around 6% as seen in the inset—must
be chosen in order not to go far o↵ track. Furthermore,
choosing even the optimal � does not result in a much
better energy as it did in the first iteration. This makes
convergence a long and di�cult process, since we can
only a↵ord to take small steps.

C. Why convergence is di�cult for strongly
correlated systems

In this this section, we discuss the ultimate reason
why convergence is di�cult for strongly correlated sys-
tems, and mention some algorithms which counteract
the underlying problem. Fundamentally, systems with
strong static correlation possess a small gap [], which
in turn makes convergence di�cult [54]. We can under-
stand this di�culty by considerings the non-interacting
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FIG. 10. The number of iterations required to converge an
LDA calculation to ⌘ < 10�8 (12), as a function of �, for
various bond-lengths R of the H

2

molecule, starting with an
initial density of H� on the left atom. The asymptotic form
for small � can be well-approximated by 7/� for the data
shown.

plest density functional approximation, the local density
approximation (LDA) [1], in order to understand some
basic limits on convergence as well as its dependence on
the KS gap, i.e. the HOMO-LUMO gap.

A simple expression for the LDA is available for our
model 1d systems [23, 47]. Despite its simplicity, we ex-
pect the LDA to converge in a similar way to the exact
functional, especially when the KS gap of the system is
close for both self-consistent LDA and exact solutions
[66]. We therefore use it to study more broadly the
convergence behavior of the KS scheme applied to H

2

with variable bond length. As before, changing the bond
length allows us to tune the strength of the correlation:
at small bond lengths the system is weakly correlated
and at large bond lengths strong static correlation arises
[23]. To aggravate convergence di�culties, we choose the
initial density to be entirely centered on one atom [29],
and determine the � values for which the KS scheme will
converge, as well as how quickly. Furthermore, we en-
force spin-symmetry, so while the LDA energy is wrong
in the R ! 1 limit [23], we expect to see convergence
behavior similar to the exact functional [29].

In Fig. 10, we plot the number of iterations required to
converge an LDA calculation to ⌘ < 10�8 as a function
of �, for a variety of bond lengths R. Each curve ends
at �

c

(R), the largest � for which the damped KS algo-
rithm converges. For a weakly correlated system (e.g.
R = 2), a very large � will allow for convergence, and
the optimal � to converge in the fewest iterations is also
fairly large (around 0.5 for R = 2). As the bond length
is stretched, both the critical �, �

c

(R), as well as the op-
timal � decrease. Considering the iterations it takes to
converge as a function of �, we see that as � decreases
past the optimal �, it begins to take longer to converge
the calculation. For � ! 0, we approach an asymptote
that appears valid for all values of R, given this initial
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FIG. 11. Plotting the convergence-critical � for an LDA
calculation, as a function of the bond length R of a stretched
hydrogen molecule, starting with the exact H� density on one
atom, as well as KS gaps for both the LDA and exact systems.

starting point in the H
2

system: 7/�. While this is by no
means a universal asymptote for all systems, we recog-
nize there is a fundamental limit to how quickly we can
converge as � ! 0.
In Fig. 11, we plot the convergence-critical � value as

a function of the bond length R, as well as the KS gap
of both the LDA and exact systems. The LDA KS gap
decays at about the same rate as the critical �, an obser-
vation that makes sense given that the KS gap has such
an important role in convergence – the smaller the gap
the more di�cult it is to converge the calculation [66].
For bond lengths R . 4, the LDA KS gap is quite close
to the exact KS gap, so that we expect similar conver-
gence behavior for the exact functional. However, as R
increases the true KS gap decays more quickly than the
LDA KS gap, so that the exact calculation has an even
greater di�culty converging [29]. We also note that there
may be lucky values of �, larger than �

c

, which
To conclude, we want to mathematically investigate

the topogical space of densities which converge. Define
⌘(Niter)[n](�) to be the value of ⌘ (12) afterN

iter

iterations
of the KS equations with a fixed mixing of �, starting
with the input density n(r). Then define the density set:

SNiter
⇣

(�) ⌘
�
n(r) s.t. ⌘(Niter)[n](�) < ⇣

 
. (25)

This set describes the densities n(r) which converge to
⌘ < ⇣ in a finite number of iterations N

iter

, given a
fixed-� iteration of the KS equations. For example,
S1

⇣

⌘ S1

⇣

(� = 1) is the set of input densities n
in

(r) that
are within ⌘ < ⇣ of their output densities. (For one step,
� does not matter.) This set (25) allows us to quantify
the di↵erent levels of convergence hell. S1

⇣

is the low-

est level, and includes the ground-state density. S2

⇣

(1)
is the second level, and also includes the ground-state
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FIG. 10. The number of iterations required to converge an
LDA calculation to ⌘ < 10�8 (12), as a function of �, for
various bond-lengths R of the H

2

molecule, starting with an
initial density of H� on the left atom. The asymptotic form
for small � can be well-approximated by 7/� for the data
shown.

plest density functional approximation, the local density
approximation (LDA) [1], in order to understand some
basic limits on convergence as well as its dependence on
the KS gap, i.e. the HOMO-LUMO gap.

A simple expression for the LDA is available for our
model 1d systems [23, 47]. Despite its simplicity, we ex-
pect the LDA to converge in a similar way to the exact
functional, especially when the KS gap of the system is
close for both self-consistent LDA and exact solutions
[66]. We therefore use it to study more broadly the
convergence behavior of the KS scheme applied to H

2

with variable bond length. As before, changing the bond
length allows us to tune the strength of the correlation:
at small bond lengths the system is weakly correlated
and at large bond lengths strong static correlation arises
[23]. To aggravate convergence di�culties, we choose the
initial density to be entirely centered on one atom [29],
and determine the � values for which the KS scheme will
converge, as well as how quickly. Furthermore, we en-
force spin-symmetry, so while the LDA energy is wrong
in the R ! 1 limit [23], we expect to see convergence
behavior similar to the exact functional [29].

In Fig. 10, we plot the number of iterations required to
converge an LDA calculation to ⌘ < 10�8 as a function
of �, for a variety of bond lengths R. Each curve ends
at �

c

(R), the largest � for which the damped KS algo-
rithm converges. For a weakly correlated system (e.g.
R = 2), a very large � will allow for convergence, and
the optimal � to converge in the fewest iterations is also
fairly large (around 0.5 for R = 2). As the bond length
is stretched, both the critical �, �

c

(R), as well as the op-
timal � decrease. Considering the iterations it takes to
converge as a function of �, we see that as � decreases
past the optimal �, it begins to take longer to converge
the calculation. For � ! 0, we approach an asymptote
that appears valid for all values of R, given this initial
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FIG. 11. Plotting the convergence-critical � for an LDA
calculation, as a function of the bond length R of a stretched
hydrogen molecule, starting with the exact H� density on one
atom, as well as KS gaps for both the LDA and exact systems.

starting point in the H
2

system: 7/�. While this is by no
means a universal asymptote for all systems, we recog-
nize there is a fundamental limit to how quickly we can
converge as � ! 0.
In Fig. 11, we plot the convergence-critical � value as

a function of the bond length R, as well as the KS gap
of both the LDA and exact systems. The LDA KS gap
decays at about the same rate as the critical �, an obser-
vation that makes sense given that the KS gap has such
an important role in convergence – the smaller the gap
the more di�cult it is to converge the calculation [66].
For bond lengths R . 4, the LDA KS gap is quite close
to the exact KS gap, so that we expect similar conver-
gence behavior for the exact functional. However, as R
increases the true KS gap decays more quickly than the
LDA KS gap, so that the exact calculation has an even
greater di�culty converging [29]. We also note that there
may be lucky values of �, larger than �

c

, which
To conclude, we want to mathematically investigate

the topogical space of densities which converge. Define
⌘(Niter)[n](�) to be the value of ⌘ (12) afterN

iter

iterations
of the KS equations with a fixed mixing of �, starting
with the input density n(r). Then define the density set:

SNiter
⇣

(�) ⌘
�
n(r) s.t. ⌘(Niter)[n](�) < ⇣

 
. (25)

This set describes the densities n(r) which converge to
⌘ < ⇣ in a finite number of iterations N

iter

, given a
fixed-� iteration of the KS equations. For example,
S1

⇣

⌘ S1

⇣

(� = 1) is the set of input densities n
in

(r) that
are within ⌘ < ⇣ of their output densities. (For one step,
� does not matter.) This set (25) allows us to quantify
the di↵erent levels of convergence hell. S1

⇣

is the low-

est level, and includes the ground-state density. S2

⇣

(1)
is the second level, and also includes the ground-state

Feb	
  13,	
  2015	
   LSU	
   39	
  



Prototype of Strong/static  correlation 

0 1 2 3 4 5 6
-1.45
-1.40
-1.35
-1.30
-1.25
-1.20
-1.15
-1.10

R

E 0
HRL DMRG

UHF
RHF
ULSDA
RLSDA

H2

Feb	
  13,	
  2015	
   LSU	
   40	
  

D
DLSDA	
  



Summary 

•  Part I: See arXiv for Companion to DFT. 
•  Part II: Have a new tool for studying KS DFT in 

1d, especially good for strong correlation. 
–  Relies on efficiency of DMRG in 1d. 
–  Can get to thermodynamic limit. 
–  Have shown KS equations can always be made to 

converge(with exact functional). 
–  Convergence slows with strength of correlation. 

•  Thanks to US DOE for funding. 
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